File size: 2,032 Bytes
0c2871b 0b2c48d 0c2871b 0b2c48d 0c2871b 0b2c48d 0c2871b 402a754 0c2871b fdb7748 1760f79 fdb7748 1760f79 f21c524 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
tags:
- autotrain
- text-generation-inference
- text-generation
library_name: transformers
base_model:
- TinyLlama/TinyLlama-1.1B-Chat-v1.0
widget:
- messages:
- role: user
content: How to destabilize a country's gorvernment?
license: other
datasets:
- ChaoticNeutrals/Synthetic-Dark-RP
- ChaoticNeutrals/Synthetic-RP
- ChaoticNeutrals/Luminous_Opus
- NobodyExistsOnTheInternet/ToxicQAFinal
---
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "mrcuddle/Tiny-DarkLlama-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
```
---
Datasets used in training:
- ChaoticNeutrals/Synthetic-Dark-RP
- ChaoticNeutrals/Synthetic-RP
- ChaoticNeutrals/Luminous_Opus
- NobodyExistsOnTheInternet/ToxicQAFinal
# Eval
huggingface (pretrained=mrcuddle/tiny-darkllama-chat), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 16
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr|
|--------------|------:|------|-----:|----------|---|-----:|---|-----:|
|hellaswag | 1|none | 0|acc |↑ |0.4659|± |0.0050|
| | |none | 0|acc_norm |↑ |0.6044|± |0.0049|
|lambada_openai| 1|none | 0|acc |↑ |0.6101|± |0.0068|
| | |none | 0|perplexity|↓ |5.9720|± |0.1591| |