Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- summarize_from_feedback
|
7 |
+
metrics:
|
8 |
+
- rouge
|
9 |
+
model-index:
|
10 |
+
- name: flan-t5-large-finetuned-openai-summarize_from_feedback
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Sequence-to-sequence Language Modeling
|
14 |
+
type: text2text-generation
|
15 |
+
dataset:
|
16 |
+
name: summarize_from_feedback
|
17 |
+
type: summarize_from_feedback
|
18 |
+
config: comparisons
|
19 |
+
split: train
|
20 |
+
args: comparisons
|
21 |
+
metrics:
|
22 |
+
- name: Rouge1
|
23 |
+
type: rouge
|
24 |
+
value: 30.2401
|
25 |
+
- name: Rouge2
|
26 |
+
type: rouge
|
27 |
+
value: 11.4916
|
28 |
+
- name: RougeL
|
29 |
+
type: rouge
|
30 |
+
value: 24.6485
|
31 |
+
- name: RougeLSum
|
32 |
+
type: rouge
|
33 |
+
value: 26.1801
|
34 |
+
pipeline_tag: summarization
|
35 |
+
---
|
36 |
+
|
37 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
38 |
+
should probably proofread and complete it, then remove this comment. -->
|
39 |
+
|
40 |
+
# flan-t5-large-finetuned-openai-summarize_from_feedback
|
41 |
+
|
42 |
+
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the summarize_from_feedback dataset.
|
43 |
+
It achieves the following results on the evaluation set:
|
44 |
+
- Loss: 2.3118
|
45 |
+
- Rouge1: 30.2401
|
46 |
+
- Rouge2: 11.4916
|
47 |
+
- Rougel: 24.6485
|
48 |
+
- Rougelsum: 26.1801
|
49 |
+
- Gen Len: 18.8428
|
50 |
+
|
51 |
+
## Model description
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Intended uses & limitations
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Training and evaluation data
|
60 |
+
|
61 |
+
More information needed
|
62 |
+
|
63 |
+
## Training procedure
|
64 |
+
|
65 |
+
### Training hyperparameters
|
66 |
+
|
67 |
+
The following hyperparameters were used during training:
|
68 |
+
- learning_rate: 5e-05
|
69 |
+
- train_batch_size: 16
|
70 |
+
- eval_batch_size: 32
|
71 |
+
- seed: 42
|
72 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
+
- lr_scheduler_type: linear
|
74 |
+
- num_epochs: 6
|
75 |
+
|
76 |
+
### Training results
|
77 |
+
|
78 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
79 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
80 |
+
| 1.7678 | 1.0 | 5804 | 1.8833 | 29.3494 | 10.9406 | 23.9907 | 25.461 | 18.9265 |
|
81 |
+
| 1.5839 | 2.0 | 11608 | 1.8992 | 29.6239 | 11.1795 | 24.2927 | 25.7183 | 18.9358 |
|
82 |
+
| 1.4812 | 3.0 | 17412 | 1.8929 | 29.8899 | 11.2855 | 24.4193 | 25.9219 | 18.9189 |
|
83 |
+
| 1.4198 | 4.0 | 23216 | 1.8939 | 29.8897 | 11.2606 | 24.3262 | 25.8642 | 18.9309 |
|
84 |
+
| 1.3612 | 5.0 | 29020 | 1.9105 | 29.8469 | 11.2112 | 24.2483 | 25.7884 | 18.9396 |
|
85 |
+
| 1.3279 | 6.0 | 34824 | 1.9170 | 30.038 | 11.3426 | 24.4385 | 25.9675 | 18.9328 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.25.1
|
91 |
+
- Pytorch 1.13.0+cu116
|
92 |
+
- Datasets 2.8.0
|
93 |
+
- Tokenizers 0.13.2
|