Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: HuggingFaceM4/idefics-9b
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: idefics-9b-ft-floco
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# idefics-9b fine-tuned on FloCo Dataset
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b) on **FloCo** dataset.
|
17 |
+
|
18 |
+
It achieves the following results on the **test set**:
|
19 |
+
- Loss: 0.724
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0002
|
39 |
+
- train_batch_size: 4
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 2
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
50 |
+
| 0.592 | 0.2 | 500 | 0.9356 |
|
51 |
+
| 0.5495 | 0.4 | 1000 | 1.0233 |
|
52 |
+
| 0.4865 | 0.59 | 1500 | 0.9564 |
|
53 |
+
| 0.4604 | 0.79 | 2000 | 0.9482 |
|
54 |
+
| 0.4551 | 0.99 | 2500 | 0.9146 |
|
55 |
+
| 0.3767 | 1.19 | 3000 | 0.9261 |
|
56 |
+
| 0.3894 | 1.39 | 3500 | 0.9387 |
|
57 |
+
| 0.3772 | 1.58 | 4000 | 0.9268 |
|
58 |
+
| 0.2707 | 1.78 | 4500 | 0.9420 |
|
59 |
+
| 0.3411 | 1.98 | 5000 | 0.9423 |
|
60 |
+
|
61 |
+
|
62 |
+
### Framework versions
|
63 |
+
|
64 |
+
- Transformers 4.33.1
|
65 |
+
- Pytorch 2.0.1+cu118
|
66 |
+
- Datasets 2.14.5
|
67 |
+
- Tokenizers 0.13.3
|