mrm8488 commited on
Commit
7a741dc
·
1 Parent(s): aabea6e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - HuggingFaceH4/no_robots
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
+ thumbnail: https://huggingface.co/mrm8488/limstral-7B-v0.1/resolve/main/limstral_logo.png
9
+ ---
10
+
11
+ ## Mistral 7B fine-tuned on H4/No Robots instructions
12
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the [HuggingFaceH4/no_robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) dataset for instruction following downstream task.
13
+
14
+ ## Training procedure
15
+
16
+ The model was loaded on **8 bits** and fine-tuned on the LIMA dataset using the **LoRA** PEFT technique with the `huggingface/peft` library and `trl/sft` for one epoch on 1 x A100 (40GB) GPU.
17
+
18
+ SFT Trainer params:
19
+ ```
20
+ trainer = SFTTrainer(
21
+ model=model,
22
+ train_dataset=train_ds,
23
+ eval_dataset=test_ds,
24
+ peft_config=peft_config,
25
+ dataset_text_field="text",
26
+ max_seq_length=2048,
27
+ tokenizer=tokenizer,
28
+ args=training_arguments,
29
+ packing=False
30
+ )
31
+ ```
32
+
33
+ LoRA config:
34
+ ```
35
+ config = LoraConfig(
36
+ lora_alpha=16,
37
+ lora_dropout=0.1,
38
+ r=64,
39
+ bias="none",
40
+ task_type="CAUSAL_LM",
41
+ target_modules = ['q_proj', 'k_proj', 'down_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj']
42
+ )
43
+ ```
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 0.0002
49
+ - train_batch_size: 2
50
+ - eval_batch_size: 8
51
+ - seed: 66
52
+ - gradient_accumulation_steps: 64
53
+ - total_train_batch_size: 128
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: cosine
56
+ - lr_scheduler_warmup_ratio: 0.03
57
+ - num_epochs: 2
58
+ - mixed_precision_training: Native AMP
59
+
60
+ ### Training results
61
+
62
+ | Step | Training Loss | Validation Loss |
63
+ |------|---------------|-----------------|
64
+ | 10 | 1.796200 | 1.774305 |
65
+ | 20 | 1.769700 | 1.679720 |
66
+ | 30 | 1.626800 | 1.667754 |
67
+ | 40 | 1.663400 | 1.665188 |
68
+ | 50 | 1.565700 | 1.659000 |
69
+ | 60 | 1.660300 | 1.658270 |
70
+
71
+
72
+
73
+
74
+ ### Usage
75
+ ```py
76
+ import torch
77
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
78
+
79
+ repo_id = "mrm8488/mistral-7b-ft-h4-no_robots_instructions"
80
+
81
+ model = AutoModelForCausalLM.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
82
+ tokenizer = AutoTokenizer.from_pretrained(repo_id)
83
+
84
+ gen = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
85
+
86
+ instruction = "[INST] Write an email to say goodbye to me boss [\INST]"
87
+ res = gen(instruction, max_new_tokens=512, temperature=0.3, top_p=0.75, top_k=40, repetition_penalty=1.2, eos_token_id=2)
88
+ print(res[0]['generated_text'])
89
+ ```
90
+
91
+ ### Framework versions
92
+
93
+ - Transformers 4.35.0.dev0
94
+ - Pytorch 2.1.0+cu118
95
+ - Datasets 2.14.6
96
+ - Tokenizers 0.14.1