--- license: apache-2.0 datasets: - HuggingFaceH4/no_robots language: - en pipeline_tag: text-generation thumbnail: https://huggingface.co/mrm8488/limstral-7B-v0.1/resolve/main/limstral_logo.png ---
limstral logo

## Mistral 7B fine-tuned on H4/No Robots instructions This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the [HuggingFaceH4/no_robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) dataset for instruction following downstream task. ## Training procedure The model was loaded on **8 bits** and fine-tuned on the LIMA dataset using the **LoRA** PEFT technique with the `huggingface/peft` library and `trl/sft` for one epoch on 1 x A100 (40GB) GPU. SFT Trainer params: ``` trainer = SFTTrainer( model=model, train_dataset=train_ds, eval_dataset=test_ds, peft_config=peft_config, dataset_text_field="text", max_seq_length=2048, tokenizer=tokenizer, args=training_arguments, packing=False ) ``` LoRA config: ``` config = LoraConfig( lora_alpha=16, lora_dropout=0.1, r=64, bias="none", task_type="CAUSAL_LM", target_modules = ['q_proj', 'k_proj', 'down_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj'] ) ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 66 - gradient_accumulation_steps: 64 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | |------|---------------|-----------------| | 10 | 1.796200 | 1.774305 | | 20 | 1.769700 | 1.679720 | | 30 | 1.626800 | 1.667754 | | 40 | 1.663400 | 1.665188 | | 50 | 1.565700 | 1.659000 | | 60 | 1.660300 | 1.658270 | ### Usage ```py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline repo_id = "mrm8488/mistral-7b-ft-h4-no_robots_instructions" model = AutoModelForCausalLM.from_pretrained(repo_id, torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(repo_id) gen = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0) instruction = "[INST] Write an email to say goodbye to me boss [\INST]" res = gen(instruction, max_new_tokens=512, temperature=0.3, top_p=0.75, top_k=40, repetition_penalty=1.2, eos_token_id=2) print(res[0]['generated_text']) ``` ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1