--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - fleurs model-index: - name: speecht5_finetuned_uz results: [] --- # speecht5_finetuned_uz This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.4840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:--------:|:----:|:---------------:| | 3.3727 | 24.3902 | 1000 | 0.4688 | | 3.2448 | 48.7805 | 2000 | 0.4741 | | 3.1413 | 73.1707 | 3000 | 0.4736 | | 3.0824 | 97.5610 | 4000 | 0.4806 | | 3.1047 | 121.9512 | 5000 | 0.4840 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.2.2+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0