File size: 3,153 Bytes
9cee5b4 1584ffa 217e67d 1584ffa ea34e96 25087c9 ea34e96 25087c9 ea34e96 1584ffa da39ce0 9cee5b4 e8d2ec5 9cee5b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
pipeline_tag: sentence-similarity
license: apache-2.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
language:
- en
datasets:
- snli
- multi_nli
metrics:
- spearmanr
model-index:
- name: mrp/SCT_BERT_Base
results:
- task:
type: STS # Required. Example: automatic-speech-recognition
name: STS # Optional. Example: Speech Recognition
dataset:
type: Similarity # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: STS12 # Required. A pretty name for the dataset. Example: Common Voice (French)
metrics:
- type: spearmanr # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 78.83 # Required. Example: 20.90
name: Test spearmanr # Optional. Example: Test WER
verified: False # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
- name: mrp/SCT_BERT_Base
results:
- task:
type: STS # Required. Example: automatic-speech-recognition
name: STS # Optional. Example: Speech Recognition
dataset:
type: Similarity # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: STS13 # Required. A pretty name for the dataset. Example: Common Voice (French)
metrics:
- type: spearmanr # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 78.02 # Required. Example: 20.90
name: Test spearmanr # Optional. Example: Test WER
verified: False # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported).
---
# mrp/SCT_BERT_Base
This is a [SCT](https://github.com/mrpeerat/SCT) model: It maps sentences to a dense vector space and can be used for tasks like semantic search.
## Usage
Using this model becomes easy when you have [SCT](https://github.com/mrpeerat/SCT) installed:
```
pip install -U git+https://github.com/mrpeerat/SCT
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('mrp/SCT_BERT_Base')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [Semantic Textual Similarity](https://github.com/mrpeerat/SCT#main-results---sts)
## Citing & Authors
```bibtex
@article{limkonchotiwat-etal-2023-sct,
title = "An Efficient Self-Supervised Cross-View Training For Sentence Embedding",
author = "Limkonchotiwat, Peerat and
Ponwitayarat, Wuttikorn and
Lowphansirikul, Lalita and
Udomcharoenchaikit, Can and
Chuangsuwanich, Ekapol and
Nutanong, Sarana",
journal = "Transactions of the Association for Computational Linguistics",
year = "2023",
address = "Cambridge, MA",
publisher = "MIT Press",
}
``` |