File size: 1,990 Bytes
b5f1cc4 f780284 b5f1cc4 6bc1db5 b5f1cc4 6bc1db5 b5f1cc4 6bc1db5 b5f1cc4 6bc1db5 b5f1cc4 614d8e9 b5f1cc4 816214d b5f1cc4 816214d b5f1cc4 816214d b5f1cc4 f0c1692 b5f1cc4 f0c1692 0fd610c f0c1692 b5f1cc4 f0c1692 b5f1cc4 f0c1692 6bc1db5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
base_model: NX-AI/xLSTM-7b
library_name: peft
license: apache-2.0
datasets:
- vicgalle/alpaca-gpt4
language:
- en
pipeline_tag: text-generation
---
# Model Card for FlowerTune-xLSTM-7b-NLP-PEFT
This PEFT adapter has been trained by using [Flower](https://flower.ai/), a friendly federated AI framework.
The adapter and benchmark results have been submitted to the [FlowerTune LLM NLP Leaderboard](https://flower.ai/benchmarks/llm-leaderboard/nlp/).
## Model Details
Please check the following GitHub project for model details and evaluation results:
[https://github.com/mrs83/FlowerTune-xLSTM-7b-NLP](https://github.com/mrs83/FlowerTune-xLSTM-7b-NLP)
## How to Get Started with the Model
First, install `xlstm` and `mlstm_kernels` packages:
```bash
pip install xlstm
pip install mlstm_kernels
```
For now, install the transformers repositiory fork from NX-AI (until it is merged):
```bash
pip install 'transformers @ git+ssh://[email protected]/NX-AI/transformers.git@integrate_xlstm'
```
Use this model as:
```
from peft import PeftModel
from transformers import AutoModelForCausalLM
base_model = AutoModelForCausalLM.from_pretrained("NX-AI/xLSTM-7b")
model = PeftModel.from_pretrained(base_model, "mrs83/FlowerTune-xLSTM-7b-NLP-PEFT")
```
### Evaluation Results (Accuracy)
- **STEM**: 13.67 %
- **Social Sciences**: 17.55 %
- **Humanities**: 14.84 %
- **Average**: 15.35 %
### Communication Budget
60609.38 Megabytes
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: QuantizationMethod.BITS_AND_BYTES
- _load_in_8bit: False
- _load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
- bnb_4bit_quant_storage: uint8
- load_in_4bit: True
- load_in_8bit: False
### Framework versions
- PEFT 0.14.0
- Flower 1.13.0 |