File size: 1,990 Bytes
b5f1cc4
 
 
f780284
 
 
 
 
 
b5f1cc4
 
6bc1db5
b5f1cc4
6bc1db5
b5f1cc4
6bc1db5
b5f1cc4
 
 
6bc1db5
b5f1cc4
614d8e9
b5f1cc4
 
 
816214d
b5f1cc4
816214d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5f1cc4
816214d
 
 
b5f1cc4
f0c1692
b5f1cc4
f0c1692
0fd610c
 
f0c1692
 
 
 
 
b5f1cc4
 
 
 
f0c1692
b5f1cc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0c1692
6bc1db5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
base_model: NX-AI/xLSTM-7b
library_name: peft
license: apache-2.0
datasets:
- vicgalle/alpaca-gpt4
language:
- en
pipeline_tag: text-generation
---

# Model Card for FlowerTune-xLSTM-7b-NLP-PEFT

This PEFT adapter has been trained by using [Flower](https://flower.ai/), a friendly federated AI framework.

The adapter and benchmark results have been submitted to the [FlowerTune LLM NLP Leaderboard](https://flower.ai/benchmarks/llm-leaderboard/nlp/).

## Model Details

Please check the following GitHub project for model details and evaluation results:

[https://github.com/mrs83/FlowerTune-xLSTM-7b-NLP](https://github.com/mrs83/FlowerTune-xLSTM-7b-NLP)

## How to Get Started with the Model

First, install `xlstm` and `mlstm_kernels` packages:

```bash
pip install xlstm
pip install mlstm_kernels
```

For now, install the transformers repositiory fork from NX-AI (until it is merged):

```bash
pip install 'transformers @ git+ssh://[email protected]/NX-AI/transformers.git@integrate_xlstm'
```

Use this model as:

```
from peft import PeftModel
from transformers import AutoModelForCausalLM

base_model = AutoModelForCausalLM.from_pretrained("NX-AI/xLSTM-7b")
model = PeftModel.from_pretrained(base_model, "mrs83/FlowerTune-xLSTM-7b-NLP-PEFT")
```

### Evaluation Results (Accuracy)

- **STEM**: 13.67 %
- **Social Sciences**: 17.55 %
- **Humanities**: 14.84 %
- **Average**: 15.35 %

### Communication Budget

60609.38 Megabytes

## Training procedure

The following `bitsandbytes` quantization config was used during training:

- quant_method: QuantizationMethod.BITS_AND_BYTES
- _load_in_8bit: False
- _load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
- bnb_4bit_quant_storage: uint8
- load_in_4bit: True
- load_in_8bit: False

### Framework versions

- PEFT 0.14.0
- Flower 1.13.0