--- base_model: NX-AI/xLSTM-7b library_name: peft license: apache-2.0 datasets: - vicgalle/alpaca-gpt4 language: - en pipeline_tag: text-generation --- # Model Card for FlowerTune-xLSTM-7b-NLP-PEFT This PEFT adapter has been trained by using [Flower](https://flower.ai/), a friendly federated AI framework. The adapter and benchmark results have been submitted to the [FlowerTune LLM NLP Leaderboard](https://flower.ai/benchmarks/llm-leaderboard/nlp/). ## Model Details Please check the following GitHub project for model details and evaluation results: [https://github.com/mrs83/FlowerTune-xLSTM-7b-NLP](https://github.com/mrs83/FlowerTune-xLSTM-7b-NLP) ## How to Get Started with the Model First, install `xlstm` and `mlstm_kernels` packages: ```bash pip install xlstm pip install mlstm_kernels ``` For now, install the transformers repositiory fork from NX-AI (until it is merged): ```bash pip install 'transformers @ git+ssh://git@github.com/NX-AI/transformers.git@integrate_xlstm' ``` Use this model as: ``` from peft import PeftModel from transformers import AutoModelForCausalLM base_model = AutoModelForCausalLM.from_pretrained("NX-AI/xLSTM-7b") model = PeftModel.from_pretrained(base_model, "mrs83/FlowerTune-xLSTM-7b-NLP-PEFT") ``` ### Evaluation Results (Accuracy) - **STEM**: 13.67 % - **Social Sciences**: 17.55 % - **Humanities**: 14.84 % - **Average**: 15.35 % ### Communication Budget 60609.38 Megabytes ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - _load_in_8bit: False - _load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 - bnb_4bit_quant_storage: uint8 - load_in_4bit: True - load_in_8bit: False ### Framework versions - PEFT 0.14.0 - Flower 1.13.0