Bảo Mai Chí commited on
Commit
1938e4a
·
verified ·
1 Parent(s): 5f93279

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:101762
10
+ - loss:TripletLoss
11
+ base_model: sentence-transformers/distiluse-base-multilingual-cased-v2
12
+ datasets: []
13
+ widget:
14
+ - source_sentence: How do I clean the screen of my Toshiba TV?
15
+ sentences:
16
+ - How can I clear screen overlay from my Samsung Galaxy 6?
17
+ - Why do police forces exist?
18
+ - What is the best way to clean a flat screen monitor?
19
+ - source_sentence: What was the first video you watched on YouTube?
20
+ sentences:
21
+ - What was the first Youtube video you ever watched?
22
+ - What was the first music video ever produced?
23
+ - What was the long term effect of Hitler's desire to exterminate the Jewish people?
24
+ - source_sentence: What should I do to recover my data from a hard disk?
25
+ sentences:
26
+ - How do I recover my deleted data files from a hard disk?
27
+ - What's the best Linux operating System distro for beginners?
28
+ - Formated Data Recovery – Recover Data from Memory Card, Disk Drive, USB, External
29
+ Drive?
30
+ - source_sentence: What are your personal top ten music albums of all time?
31
+ sentences:
32
+ - What are your top 10 favourite songs of all time?
33
+ - What are the Top 10 music albums of all time on your list?
34
+ - What stream should I take in 11th if I have to become an automobile engineer?
35
+ - source_sentence: What is the best website to learn coding independently?
36
+ sentences:
37
+ - What are some of the best website to learn programming from being a total beginner?
38
+ - What books do I need to read to learn more about Sufism?
39
+ - What is the best (and fastest) way to learn how to code (web development)?
40
+ pipeline_tag: sentence-similarity
41
+ ---
42
+
43
+ # SentenceTransformer based on sentence-transformers/distiluse-base-multilingual-cased-v2
44
+
45
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** Sentence Transformer
51
+ - **Base model:** [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2) <!-- at revision 03a0532331151aeb3e1d2e602ffad62bb212a38d -->
52
+ - **Maximum Sequence Length:** 256 tokens
53
+ - **Output Dimensionality:** 768 tokens
54
+ - **Similarity Function:** Cosine Similarity
55
+ <!-- - **Training Dataset:** Unknown -->
56
+ <!-- - **Language:** Unknown -->
57
+ <!-- - **License:** Unknown -->
58
+
59
+ ### Model Sources
60
+
61
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
62
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
63
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
64
+
65
+ ### Full Model Architecture
66
+
67
+ ```
68
+ SentenceTransformer(
69
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: DistilBertModel
70
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
71
+ )
72
+ ```
73
+
74
+ ## Usage
75
+
76
+ ### Direct Usage (Sentence Transformers)
77
+
78
+ First install the Sentence Transformers library:
79
+
80
+ ```bash
81
+ pip install -U sentence-transformers
82
+ ```
83
+
84
+ Then you can load this model and run inference.
85
+ ```python
86
+ from sentence_transformers import SentenceTransformer
87
+
88
+ # Download from the 🤗 Hub
89
+ model = SentenceTransformer("chibao24/distilroberta-base-sentence-transformer-triplets")
90
+ # Run inference
91
+ sentences = [
92
+ 'What is the best website to learn coding independently?',
93
+ 'What are some of the best website to learn programming from being a total beginner?',
94
+ 'What is the best (and fastest) way to learn how to code (web development)?',
95
+ ]
96
+ embeddings = model.encode(sentences)
97
+ print(embeddings.shape)
98
+ # [3, 768]
99
+
100
+ # Get the similarity scores for the embeddings
101
+ similarities = model.similarity(embeddings, embeddings)
102
+ print(similarities.shape)
103
+ # [3, 3]
104
+ ```
105
+
106
+ <!--
107
+ ### Direct Usage (Transformers)
108
+
109
+ <details><summary>Click to see the direct usage in Transformers</summary>
110
+
111
+ </details>
112
+ -->
113
+
114
+ <!--
115
+ ### Downstream Usage (Sentence Transformers)
116
+
117
+ You can finetune this model on your own dataset.
118
+
119
+ <details><summary>Click to expand</summary>
120
+
121
+ </details>
122
+ -->
123
+
124
+ <!--
125
+ ### Out-of-Scope Use
126
+
127
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
128
+ -->
129
+
130
+ <!--
131
+ ## Bias, Risks and Limitations
132
+
133
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
134
+ -->
135
+
136
+ <!--
137
+ ### Recommendations
138
+
139
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
140
+ -->
141
+
142
+ ## Training Details
143
+
144
+ ### Training Dataset
145
+
146
+ #### Unnamed Dataset
147
+
148
+
149
+ * Size: 101,762 training samples
150
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
151
+ * Approximate statistics based on the first 1000 samples:
152
+ | | sentence_0 | sentence_1 | sentence_2 |
153
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
154
+ | type | string | string | string |
155
+ | details | <ul><li>min: 6 tokens</li><li>mean: 14.7 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.66 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.22 tokens</li><li>max: 84 tokens</li></ul> |
156
+ * Samples:
157
+ | sentence_0 | sentence_1 | sentence_2 |
158
+ |:-------------------------------------------------------------------------------|:----------------------------------------------------------------------|:------------------------------------------------------------|
159
+ | <code>What are the differences between "be made of" and "be made from"?</code> | <code>What's the difference between "made of" and "made from"?</code> | <code>What is the difference between make and craft?</code> |
160
+ | <code>How can we use the word "inertia" in a sentence?</code> | <code>How can the word "inertia" be used in a sentence?</code> | <code>What is inertia actually?</code> |
161
+ | <code>Who are the new (i.e. first-time) Top Question Writers for 2017?</code> | <code>Who are the top question writers for 2017?</code> | <code>Who are the 2016 Top Writers?</code> |
162
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
163
+ ```json
164
+ {
165
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
166
+ "triplet_margin": 5
167
+ }
168
+ ```
169
+
170
+ ### Training Hyperparameters
171
+ #### Non-Default Hyperparameters
172
+
173
+ - `per_device_train_batch_size`: 128
174
+ - `per_device_eval_batch_size`: 128
175
+ - `num_train_epochs`: 4
176
+ - `multi_dataset_batch_sampler`: round_robin
177
+
178
+ #### All Hyperparameters
179
+ <details><summary>Click to expand</summary>
180
+
181
+ - `overwrite_output_dir`: False
182
+ - `do_predict`: False
183
+ - `eval_strategy`: no
184
+ - `prediction_loss_only`: True
185
+ - `per_device_train_batch_size`: 128
186
+ - `per_device_eval_batch_size`: 128
187
+ - `per_gpu_train_batch_size`: None
188
+ - `per_gpu_eval_batch_size`: None
189
+ - `gradient_accumulation_steps`: 1
190
+ - `eval_accumulation_steps`: None
191
+ - `learning_rate`: 5e-05
192
+ - `weight_decay`: 0.0
193
+ - `adam_beta1`: 0.9
194
+ - `adam_beta2`: 0.999
195
+ - `adam_epsilon`: 1e-08
196
+ - `max_grad_norm`: 1
197
+ - `num_train_epochs`: 4
198
+ - `max_steps`: -1
199
+ - `lr_scheduler_type`: linear
200
+ - `lr_scheduler_kwargs`: {}
201
+ - `warmup_ratio`: 0.0
202
+ - `warmup_steps`: 0
203
+ - `log_level`: passive
204
+ - `log_level_replica`: warning
205
+ - `log_on_each_node`: True
206
+ - `logging_nan_inf_filter`: True
207
+ - `save_safetensors`: True
208
+ - `save_on_each_node`: False
209
+ - `save_only_model`: False
210
+ - `restore_callback_states_from_checkpoint`: False
211
+ - `no_cuda`: False
212
+ - `use_cpu`: False
213
+ - `use_mps_device`: False
214
+ - `seed`: 42
215
+ - `data_seed`: None
216
+ - `jit_mode_eval`: False
217
+ - `use_ipex`: False
218
+ - `bf16`: False
219
+ - `fp16`: False
220
+ - `fp16_opt_level`: O1
221
+ - `half_precision_backend`: auto
222
+ - `bf16_full_eval`: False
223
+ - `fp16_full_eval`: False
224
+ - `tf32`: None
225
+ - `local_rank`: 0
226
+ - `ddp_backend`: None
227
+ - `tpu_num_cores`: None
228
+ - `tpu_metrics_debug`: False
229
+ - `debug`: []
230
+ - `dataloader_drop_last`: False
231
+ - `dataloader_num_workers`: 0
232
+ - `dataloader_prefetch_factor`: None
233
+ - `past_index`: -1
234
+ - `disable_tqdm`: False
235
+ - `remove_unused_columns`: True
236
+ - `label_names`: None
237
+ - `load_best_model_at_end`: False
238
+ - `ignore_data_skip`: False
239
+ - `fsdp`: []
240
+ - `fsdp_min_num_params`: 0
241
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
242
+ - `fsdp_transformer_layer_cls_to_wrap`: None
243
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
244
+ - `deepspeed`: None
245
+ - `label_smoothing_factor`: 0.0
246
+ - `optim`: adamw_torch
247
+ - `optim_args`: None
248
+ - `adafactor`: False
249
+ - `group_by_length`: False
250
+ - `length_column_name`: length
251
+ - `ddp_find_unused_parameters`: None
252
+ - `ddp_bucket_cap_mb`: None
253
+ - `ddp_broadcast_buffers`: False
254
+ - `dataloader_pin_memory`: True
255
+ - `dataloader_persistent_workers`: False
256
+ - `skip_memory_metrics`: True
257
+ - `use_legacy_prediction_loop`: False
258
+ - `push_to_hub`: False
259
+ - `resume_from_checkpoint`: None
260
+ - `hub_model_id`: None
261
+ - `hub_strategy`: every_save
262
+ - `hub_private_repo`: False
263
+ - `hub_always_push`: False
264
+ - `gradient_checkpointing`: False
265
+ - `gradient_checkpointing_kwargs`: None
266
+ - `include_inputs_for_metrics`: False
267
+ - `eval_do_concat_batches`: True
268
+ - `fp16_backend`: auto
269
+ - `push_to_hub_model_id`: None
270
+ - `push_to_hub_organization`: None
271
+ - `mp_parameters`:
272
+ - `auto_find_batch_size`: False
273
+ - `full_determinism`: False
274
+ - `torchdynamo`: None
275
+ - `ray_scope`: last
276
+ - `ddp_timeout`: 1800
277
+ - `torch_compile`: False
278
+ - `torch_compile_backend`: None
279
+ - `torch_compile_mode`: None
280
+ - `dispatch_batches`: None
281
+ - `split_batches`: None
282
+ - `include_tokens_per_second`: False
283
+ - `include_num_input_tokens_seen`: False
284
+ - `neftune_noise_alpha`: None
285
+ - `optim_target_modules`: None
286
+ - `batch_eval_metrics`: False
287
+ - `batch_sampler`: batch_sampler
288
+ - `multi_dataset_batch_sampler`: round_robin
289
+
290
+ </details>
291
+
292
+ ### Training Logs
293
+ | Epoch | Step | Training Loss |
294
+ |:------:|:----:|:-------------:|
295
+ | 0.6281 | 500 | 4.2255 |
296
+ | 1.2563 | 1000 | 3.484 |
297
+ | 1.8844 | 1500 | 2.8611 |
298
+ | 2.5126 | 2000 | 2.4607 |
299
+ | 3.1407 | 2500 | 2.148 |
300
+ | 3.7688 | 3000 | 1.8583 |
301
+
302
+
303
+ ### Framework Versions
304
+ - Python: 3.10.12
305
+ - Sentence Transformers: 3.0.1
306
+ - Transformers: 4.41.2
307
+ - PyTorch: 2.1.2+cu121
308
+ - Accelerate: 0.32.1
309
+ - Datasets: 2.19.0
310
+ - Tokenizers: 0.19.1
311
+
312
+ ## Citation
313
+
314
+ ### BibTeX
315
+
316
+ #### Sentence Transformers
317
+ ```bibtex
318
+ @inproceedings{reimers-2019-sentence-bert,
319
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
320
+ author = "Reimers, Nils and Gurevych, Iryna",
321
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
322
+ month = "11",
323
+ year = "2019",
324
+ publisher = "Association for Computational Linguistics",
325
+ url = "https://arxiv.org/abs/1908.10084",
326
+ }
327
+ ```
328
+
329
+ #### TripletLoss
330
+ ```bibtex
331
+ @misc{hermans2017defense,
332
+ title={In Defense of the Triplet Loss for Person Re-Identification},
333
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
334
+ year={2017},
335
+ eprint={1703.07737},
336
+ archivePrefix={arXiv},
337
+ primaryClass={cs.CV}
338
+ }
339
+ ```
340
+
341
+ <!--
342
+ ## Glossary
343
+
344
+ *Clearly define terms in order to be accessible across audiences.*
345
+ -->
346
+
347
+ <!--
348
+ ## Model Card Authors
349
+
350
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
351
+ -->
352
+
353
+ <!--
354
+ ## Model Card Contact
355
+
356
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
357
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "model/distilroberta-base-sentence-transformer-triplets",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "output_hidden_states": true,
17
+ "output_past": true,
18
+ "pad_token_id": 0,
19
+ "qa_dropout": 0.1,
20
+ "seq_classif_dropout": 0.2,
21
+ "sinusoidal_pos_embds": false,
22
+ "tie_weights_": true,
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.41.2",
25
+ "vocab_size": 119547
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4719853593149fe6b6bdfa77672b8250d98c1775dc8d352341c93fc06948e02
3
+ size 538947416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "full_tokenizer_file": null,
49
+ "mask_token": "[MASK]",
50
+ "max_len": 512,
51
+ "max_length": 256,
52
+ "model_max_length": 256,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "DistilBertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff