File size: 2,207 Bytes
2608bd1 fb950f6 1dee721 fb950f6 2608bd1 fb950f6 2608bd1 fb950f6 2608bd1 fb950f6 2608bd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: peft
license: llama3.2
base_model: meta-llama/Llama-3.2-3B
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: LLama3-1B-finetuning-italian-version
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# LLama3-1B-finetuning-italian-version
This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4550
- Model Preparation Time: 0.0066
- Accuracy: 0.8313
- F1 Macro: 0.8378
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy | F1 Macro |
|:-------------:|:-----:|:----:|:---------------:|:----------------------:|:--------:|:--------:|
| 0.5588 | 1.0 | 368 | 0.5780 | 0.0066 | 0.7503 | 0.7548 |
| 0.4576 | 2.0 | 736 | 0.4660 | 0.0066 | 0.8048 | 0.8131 |
| 0.2993 | 3.0 | 1104 | 0.4513 | 0.0066 | 0.8177 | 0.8253 |
| 0.1717 | 4.0 | 1472 | 0.5759 | 0.0066 | 0.8020 | 0.8123 |
| 0.1154 | 5.0 | 1840 | 0.6625 | 0.0066 | 0.8136 | 0.8214 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0 |