--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-3B tags: - generated_from_trainer metrics: - accuracy model-index: - name: LLama3-3B-finetuning-italian-version results: [] --- # LLama3-3B-finetuning-italian-version This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4762 - Model Preparation Time: 0.0067 - Accuracy: 0.8388 - F1 Macro: 0.8459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.9922302694761015e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.0960656012161834 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:--------:|:--------:| | 0.4458 | 1.0 | 735 | 0.4802 | 0.0067 | 0.8034 | 0.8130 | | 0.3723 | 2.0 | 1470 | 0.4281 | 0.0067 | 0.8184 | 0.8270 | | 0.2744 | 3.0 | 2205 | 0.4820 | 0.0067 | 0.8218 | 0.8305 | | 0.1358 | 4.0 | 2940 | 0.6884 | 0.0067 | 0.8156 | 0.8254 | ### Framework versions - PEFT 0.14.0 - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0