--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: LLama3-finetuning results: [] --- # LLama3-finetuning This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3923 - Accuracy: 0.8414 - F1 Macro: 0.8365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 1.8719 | 1.0 | 454 | 0.8635 | 0.6562 | 0.6261 | | 0.9455 | 2.0 | 908 | 0.4734 | 0.8168 | 0.8068 | | 0.7437 | 3.0 | 1362 | 0.4071 | 0.8366 | 0.8305 | | 0.7825 | 4.0 | 1816 | 0.3959 | 0.8433 | 0.8391 | | 0.6047 | 5.0 | 2270 | 0.3910 | 0.8400 | 0.8341 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0