File size: 1,233 Bytes
e971c25 b3e4ed2 e971c25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- msamogh/autonlp-data-cai-out-of-scope
co2_eq_emissions: 2.438401649319185
---
# What do the class labels mean?
0 - out of scope
1 - in scope
# Model Trained Using AutoNLP
- Problem type: Binary Classification
- Model ID: 649919116
- CO2 Emissions (in grams): 2.438401649319185
## Validation Metrics
- Loss: 0.5314930081367493
- Accuracy: 0.7526881720430108
- Precision: 0.8490566037735849
- Recall: 0.75
- AUC: 0.8515151515151514
- F1: 0.7964601769911505
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/msamogh/autonlp-cai-out-of-scope-649919116
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919116", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919116", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |