File size: 1,233 Bytes
e971c25
 
 
 
 
 
 
 
 
b3e4ed2
 
 
e971c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- msamogh/autonlp-data-cai-out-of-scope
co2_eq_emissions: 2.438401649319185
---
# What do the class labels mean?
0 - out of scope
1 - in scope

# Model Trained Using AutoNLP

- Problem type: Binary Classification
- Model ID: 649919116
- CO2 Emissions (in grams): 2.438401649319185

## Validation Metrics

- Loss: 0.5314930081367493
- Accuracy: 0.7526881720430108
- Precision: 0.8490566037735849
- Recall: 0.75
- AUC: 0.8515151515151514
- F1: 0.7964601769911505

## Usage

You can use cURL to access this model:

```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/msamogh/autonlp-cai-out-of-scope-649919116
```

Or Python API:

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919116", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919116", use_auth_token=True)

inputs = tokenizer("I love AutoNLP", return_tensors="pt")

outputs = model(**inputs)
```