kristian-a commited on
Commit
4ea4755
·
verified ·
1 Parent(s): 556144a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -102
README.md CHANGED
@@ -76,7 +76,7 @@ Use the code below to get started with the model.
76
 
77
  ```python
78
  model_name = 'msc-smart-contract-auditing/deepseek-coder-6.7b-vulnerability'
79
- tokenizer = AutoTokenizer.from_pretrained( # For some reason the tokenizer didn't safe properly
80
  "deepseek-ai/deepseek-coder-6.7b-instruct",
81
  trust_remote_code=True,
82
  force_download=True,
@@ -118,34 +118,25 @@ https://huggingface.co/datasets/msc-smart-contract-auditing/audits-with-reasons
118
  ### Training Procedure
119
 
120
  lora_config = LoraConfig(
121
- r=16, # rank
122
- lora_alpha=32, # scaling factor
123
- target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",],
124
- lora_dropout=0.05, # dropout rate for LoRA layers
125
  )
126
 
127
- model = get_peft_model(model, lora_config)
128
-
129
- from transformers import Trainer, TrainingArguments
130
-
131
- trainer = Trainer(
132
- model=model,
133
- args=TrainingArguments(
134
- per_device_train_batch_size = 2,
135
- gradient_accumulation_steps = 4,
136
- warmup_steps = 5,
137
- num_train_epochs = 1,
138
- learning_rate = 2e-4,
139
- fp16 = True,
140
- logging_steps = 1,
141
- optim = "adamw_8bit",
142
- weight_decay = 0.01,
143
- lr_scheduler_type = "linear",
144
- seed = 3407,
145
- output_dir = "outputs",
146
- ),
147
- train_dataset=train_prompts,
148
- eval_dataset=test_prompts,
149
  )
150
 
151
  #### Training Hyperparameters
@@ -160,81 +151,6 @@ trainer = Trainer(
160
 
161
  https://huggingface.co/datasets/msc-smart-contract-auditing/audits-with-reasons
162
 
163
- #### Factors
164
-
165
- [More Information Needed]
166
-
167
- #### Metrics
168
-
169
- [More Information Needed]
170
-
171
- ### Results
172
-
173
- [More Information Needed]
174
-
175
- #### Summary
176
-
177
-
178
-
179
- ## Environmental Impact
180
-
181
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
182
-
183
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
184
-
185
- - **Hardware Type:** [More Information Needed]
186
- - **Hours used:** [More Information Needed]
187
- - **Cloud Provider:** [More Information Needed]
188
- - **Compute Region:** [More Information Needed]
189
- - **Carbon Emitted:** [More Information Needed]
190
-
191
- ## Technical Specifications [optional]
192
-
193
- ### Model Architecture and Objective
194
-
195
- [More Information Needed]
196
-
197
- ### Compute Infrastructure
198
-
199
- [More Information Needed]
200
-
201
- #### Hardware
202
-
203
- [More Information Needed]
204
-
205
- #### Software
206
-
207
- [More Information Needed]
208
-
209
- ## Citation [optional]
210
-
211
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
212
-
213
- **BibTeX:**
214
-
215
- [More Information Needed]
216
-
217
- **APA:**
218
-
219
- [More Information Needed]
220
-
221
- ## Glossary [optional]
222
-
223
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
224
-
225
- [More Information Needed]
226
-
227
- ## More Information [optional]
228
-
229
- [More Information Needed]
230
-
231
- ## Model Card Authors [optional]
232
-
233
- [More Information Needed]
234
-
235
- ## Model Card Contact
236
-
237
- [More Information Needed]
238
  ### Framework versions
239
 
240
  - PEFT 0.11.1
 
76
 
77
  ```python
78
  model_name = 'msc-smart-contract-auditing/deepseek-coder-6.7b-vulnerability'
79
+ tokenizer = AutoTokenizer.from_pretrained( # For some reason the tokenizer didn't save properly
80
  "deepseek-ai/deepseek-coder-6.7b-instruct",
81
  trust_remote_code=True,
82
  force_download=True,
 
118
  ### Training Procedure
119
 
120
  lora_config = LoraConfig(
121
+ r=16, # rank
122
+ lora_alpha=32, # scaling factor
123
+ target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",],
124
+ lora_dropout=0.05, # dropout rate for LoRA layers
125
  )
126
 
127
+ TrainingArguments(
128
+ per_device_train_batch_size = 2,
129
+ gradient_accumulation_steps = 4,
130
+ warmup_steps = 5,
131
+ num_train_epochs = 1,
132
+ learning_rate = 2e-4,
133
+ fp16 = True,
134
+ logging_steps = 1,
135
+ optim = "adamw_8bit",
136
+ weight_decay = 0.01,
137
+ lr_scheduler_type = "linear",
138
+ seed = 3407,
139
+ output_dir = "outputs",
 
 
 
 
 
 
 
 
 
140
  )
141
 
142
  #### Training Hyperparameters
 
151
 
152
  https://huggingface.co/datasets/msc-smart-contract-auditing/audits-with-reasons
153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154
  ### Framework versions
155
 
156
  - PEFT 0.11.1