mshayan38 commited on
Commit
429767f
·
verified ·
1 Parent(s): b647305

Upload 12 files

Browse files
Files changed (6) hide show
  1. README.md +180 -37
  2. adapter_model.safetensors +1 -1
  3. optimizer.pt +3 -0
  4. rng_state.pth +3 -0
  5. scheduler.pt +3 -0
  6. trainer_state.json +3 -103
README.md CHANGED
@@ -1,59 +1,202 @@
1
  ---
2
- license: other
3
  library_name: peft
4
- tags:
5
- - llama-factory
6
- - lora
7
- - generated_from_trainer
8
  base_model: huggyllama/llama-7b
9
- model-index:
10
- - name: custom1
11
- results: []
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
 
17
- # custom1
18
 
19
- This model is a fine-tuned version of [huggyllama/llama-7b](https://huggingface.co/huggyllama/llama-7b) on the identity dataset.
20
 
21
- ## Model description
22
 
23
- More information needed
24
 
25
- ## Intended uses & limitations
26
 
27
- More information needed
28
 
29
- ## Training and evaluation data
30
 
31
- More information needed
32
 
33
- ## Training procedure
 
 
 
 
 
 
34
 
35
- ### Training hyperparameters
36
 
37
- The following hyperparameters were used during training:
38
- - learning_rate: 5e-05
39
- - train_batch_size: 2
40
- - eval_batch_size: 8
41
- - seed: 42
42
- - gradient_accumulation_steps: 8
43
- - total_train_batch_size: 16
44
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
- - lr_scheduler_type: cosine
46
- - num_epochs: 3.0
47
- - mixed_precision_training: Native AMP
48
 
49
- ### Training results
 
 
50
 
 
51
 
 
52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  ### Framework versions
54
 
55
- - PEFT 0.10.0
56
- - Transformers 4.40.1
57
- - Pytorch 2.2.1+cu121
58
- - Datasets 2.19.0
59
- - Tokenizers 0.19.1
 
1
  ---
 
2
  library_name: peft
 
 
 
 
3
  base_model: huggyllama/llama-7b
 
 
 
4
  ---
5
 
6
+ # Model Card for Model ID
 
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
+ ## Model Details
13
 
14
+ ### Model Description
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
17
 
 
18
 
 
19
 
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
+ ### Model Sources [optional]
29
 
30
+ <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
 
 
 
 
31
 
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
 
36
+ ## Uses
37
 
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
  ### Framework versions
201
 
202
+ - PEFT 0.10.0
 
 
 
 
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d754527c09091f5c684d740413ac5fda645f387b868be523e3787f15e614ea73
3
  size 16794200
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b96a881cc1162f43841907d1843d92771fa4ff2e7b2a60c91e0a18c95a6f4c5d
3
  size 16794200
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67aa4b6e0d534ceb3c9ef32dd80aa6b12774d28f706a2eaeff73e71695f11bb0
3
+ size 33662074
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9196a1e708bf24d6abba41cce3f8558820acc3e50f9394c5955e29eb41ffea3d
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdd0a13530404dbdd91edc70dd9ef4b4da9e24a1dbd58ee2f94d844cd7a6e62e
3
+ size 1064
trainer_state.json CHANGED
@@ -1,9 +1,9 @@
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
- "epoch": 2.9982238010657194,
5
  "eval_steps": 500,
6
- "global_step": 1266,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
@@ -1687,106 +1687,6 @@
1687
  "learning_rate": 3.345485990286029e-07,
1688
  "loss": 1.9999,
1689
  "step": 1200
1690
- },
1691
- {
1692
- "epoch": 2.8537596210775606,
1693
- "grad_norm": 1.529491901397705,
1694
- "learning_rate": 2.8587263868213585e-07,
1695
- "loss": 2.1399,
1696
- "step": 1205
1697
- },
1698
- {
1699
- "epoch": 2.865600947306098,
1700
- "grad_norm": 1.5479165315628052,
1701
- "learning_rate": 2.410013050375859e-07,
1702
- "loss": 1.8664,
1703
- "step": 1210
1704
- },
1705
- {
1706
- "epoch": 2.877442273534636,
1707
- "grad_norm": 1.1747933626174927,
1708
- "learning_rate": 1.999415058312276e-07,
1709
- "loss": 1.9633,
1710
- "step": 1215
1711
- },
1712
- {
1713
- "epoch": 2.8892835997631736,
1714
- "grad_norm": 1.358820915222168,
1715
- "learning_rate": 1.6269956203107117e-07,
1716
- "loss": 2.0106,
1717
- "step": 1220
1718
- },
1719
- {
1720
- "epoch": 2.901124925991711,
1721
- "grad_norm": 1.554287314414978,
1722
- "learning_rate": 1.2928120686377388e-07,
1723
- "loss": 1.7896,
1724
- "step": 1225
1725
- },
1726
- {
1727
- "epoch": 2.9129662522202486,
1728
- "grad_norm": 1.5915781259536743,
1729
- "learning_rate": 9.969158493204067e-08,
1730
- "loss": 1.8759,
1731
- "step": 1230
1732
- },
1733
- {
1734
- "epoch": 2.924807578448786,
1735
- "grad_norm": 1.6586300134658813,
1736
- "learning_rate": 7.393525142262991e-08,
1737
- "loss": 1.9413,
1738
- "step": 1235
1739
- },
1740
- {
1741
- "epoch": 2.936648904677324,
1742
- "grad_norm": 1.416338562965393,
1743
- "learning_rate": 5.2016171405103174e-08,
1744
- "loss": 1.8404,
1745
- "step": 1240
1746
- },
1747
- {
1748
- "epoch": 2.9484902309058616,
1749
- "grad_norm": 1.3145766258239746,
1750
- "learning_rate": 3.393771922142741e-08,
1751
- "loss": 2.0654,
1752
- "step": 1245
1753
- },
1754
- {
1755
- "epoch": 2.960331557134399,
1756
- "grad_norm": 1.3440285921096802,
1757
- "learning_rate": 1.9702677966507154e-08,
1758
- "loss": 1.8111,
1759
- "step": 1250
1760
- },
1761
- {
1762
- "epoch": 2.9721728833629366,
1763
- "grad_norm": 1.3247921466827393,
1764
- "learning_rate": 9.31323905974113e-09,
1765
- "loss": 1.8708,
1766
- "step": 1255
1767
- },
1768
- {
1769
- "epoch": 2.984014209591474,
1770
- "grad_norm": 1.7957427501678467,
1771
- "learning_rate": 2.771001907653226e-09,
1772
- "loss": 1.8842,
1773
- "step": 1260
1774
- },
1775
- {
1776
- "epoch": 2.995855535820012,
1777
- "grad_norm": 1.4069582223892212,
1778
- "learning_rate": 7.697365768943864e-11,
1779
- "loss": 1.9665,
1780
- "step": 1265
1781
- },
1782
- {
1783
- "epoch": 2.9982238010657194,
1784
- "step": 1266,
1785
- "total_flos": 6.019503790030848e+16,
1786
- "train_loss": 1.9697479162170988,
1787
- "train_runtime": 4932.4291,
1788
- "train_samples_per_second": 4.109,
1789
- "train_steps_per_second": 0.257
1790
  }
1791
  ],
1792
  "logging_steps": 5,
@@ -1794,7 +1694,7 @@
1794
  "num_input_tokens_seen": 0,
1795
  "num_train_epochs": 3,
1796
  "save_steps": 100,
1797
- "total_flos": 6.019503790030848e+16,
1798
  "train_batch_size": 2,
1799
  "trial_name": null,
1800
  "trial_params": null
 
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
+ "epoch": 2.841918294849023,
5
  "eval_steps": 500,
6
+ "global_step": 1200,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
 
1687
  "learning_rate": 3.345485990286029e-07,
1688
  "loss": 1.9999,
1689
  "step": 1200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1690
  }
1691
  ],
1692
  "logging_steps": 5,
 
1694
  "num_input_tokens_seen": 0,
1695
  "num_train_epochs": 3,
1696
  "save_steps": 100,
1697
+ "total_flos": 5.69903990243328e+16,
1698
  "train_batch_size": 2,
1699
  "trial_name": null,
1700
  "trial_params": null