Commit
·
f2affd1
1
Parent(s):
a314f95
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2-2.zip +3 -0
- ppo-LunarLander-v2-2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-2/data +94 -0
- ppo-LunarLander-v2-2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-2/policy.pth +3 -0
- ppo-LunarLander-v2-2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 268.77 +/- 23.15
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5d60a4dca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5d60a4dd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5d60a4ddc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5d60a4de50>", "_build": "<function ActorCriticPolicy._build at 0x7f5d60a4dee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5d60a4df70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5d60a51040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5d60a510d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5d60a51160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5d60a511f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5d60a51280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5d60a4a4e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671288514468403341, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACOnbwpGEe6bGxHO3z5qDdWTT67yt8eugAAgD8AAIA/rf5DPj9ReT/GG4A9PxCWvn3u1D0pYwq9AAAAAAAAAACTUvY+RwknP+P/7jtNOaG+JRqbPnnmmr0AAAAAAAAAAJorYLyPkla6i+DTNz0HVraA7i27vn+FtQAAgD8AAIA/M6pTveyp1rk+BgC5ml+xMcC3nbqGYRc4AACAPwAAgD8A4A88FDTZunTLrLw7cLY8EI7hO/K6nL0AAIA/AACAP9PbGr4prRI/iQGYPWvYbL7mSzS97ptnPQAAAAAAAAAAszkUPR/d5rmOOpK5c7Tlsz1PzbpG0qo4AACAPwAAgD9mqeK9uB76uWa4p7t1mzs4dhykO53ujDgAAIA/AACAP5r5ob1ca1i6m6kIte/iWq30iUy6oyxyNAAAgD8AAIA/MyN3PSloJLraJJU4L4uYM5NXtjrR5qu3AACAPwAAgD/avpY93I2IPn7WzzzSV1W+k2uJPabVETsAAAAAAAAAAKaLFD6MDKU+mk0/vtQNiL6fbtW7ipFLvQAAAAAAAAAAZiZZOo/GWLqZDpu2xqmOsedbeTim+7g1AACAPwAAgD9T6w8+H8Xju0IV97oL37c4HzcvvZ7BIDoAAIA/AACAP5MCG77/TBw/LG8PPV15tb7kvMu9wt0wPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAkpDjUI0YUCUhpRSlIwBbJRN6AOMAXSUR0CW+Yzu4PPLdX2UKGgGaAloD0MIV3cstkkhPECUhpRSlGgVS+RoFkdAlvnRIBikPHV9lChoBmgJaA9DCDqUoSqm+WdAlIaUUpRoFU3oA2gWR0CW/PYf4h2XdX2UKGgGaAloD0MIP1dbsT8IZECUhpRSlGgVTegDaBZHQJcCJKjBVMp1fZQoaAZoCWgPQwgboDTUqNVlQJSGlFKUaBVN6ANoFkdAlwTtoN/e+HV9lChoBmgJaA9DCBsOSwM/EWJAlIaUUpRoFU3oA2gWR0CXCxuLrHENdX2UKGgGaAloD0MIK9oc57Z9ZkCUhpRSlGgVTegDaBZHQJcPRdE9dNZ1fZQoaAZoCWgPQwg+P4wQHuNlQJSGlFKUaBVN6ANoFkdAlxfDE3sHB3V9lChoBmgJaA9DCOzdH+/VBGNAlIaUUpRoFU3oA2gWR0CXGCX/HYHxdX2UKGgGaAloD0MIpdsSueC5Y0CUhpRSlGgVTegDaBZHQJc1UmQbMot1fZQoaAZoCWgPQwhpxTcUPiFhQJSGlFKUaBVN6ANoFkdAlzd4fnwG4nV9lChoBmgJaA9DCFw65jwjCXJAlIaUUpRoFU3xAWgWR0CXOpjU/fO2dX2UKGgGaAloD0MIt5vgmybOZECUhpRSlGgVTegDaBZHQJc7vnmq5sl1fZQoaAZoCWgPQwhYchWL301jQJSGlFKUaBVN6ANoFkdAlzwFkDp1R3V9lChoBmgJaA9DCMZNDTQfbWlAlIaUUpRoFU3oA2gWR0CXPHyNGViXdX2UKGgGaAloD0MIidFzC91jZUCUhpRSlGgVTegDaBZHQJc8rqzJIUd1fZQoaAZoCWgPQwj4NZIEYR1oQJSGlFKUaBVN6ANoFkdAlzzGAkLQX3V9lChoBmgJaA9DCKX2ItqOxWxAlIaUUpRoFU1FAmgWR0CXQc+JgsshdX2UKGgGaAloD0MI3enOE09UZ0CUhpRSlGgVTegDaBZHQJdE08ifQKN1fZQoaAZoCWgPQwgtYAK3bjJmQJSGlFKUaBVN6ANoFkdAl0USlSCOFXV9lChoBmgJaA9DCAX8GkkC82BAlIaUUpRoFU3oA2gWR0CXR/mReTmodX2UKGgGaAloD0MItYzUe6r/YECUhpRSlGgVTegDaBZHQJdM/pgTh5x1fZQoaAZoCWgPQwgK8x5nGlpmQJSGlFKUaBVN6ANoFkdAl0/KrR0EHXV9lChoBmgJaA9DCBFwCFXq0mJAlIaUUpRoFU3oA2gWR0CXZXwhGH58dX2UKGgGaAloD0MIeHsQAvLhYUCUhpRSlGgVTegDaBZHQJdl/W1+iJx1fZQoaAZoCWgPQwhuhbAaS8dwQJSGlFKUaBVNywNoFkdAl3BejmCAc3V9lChoBmgJaA9DCMLc7uW+bmdAlIaUUpRoFU3oA2gWR0CXh6bc45tFdX2UKGgGaAloD0MIcCamCzE0ZECUhpRSlGgVTegDaBZHQJeLD2+PBBR1fZQoaAZoCWgPQwjbwB2o0wxjQJSGlFKUaBVN6ANoFkdAl4x4R/ViF3V9lChoBmgJaA9DCFUuVP61YWNAlIaUUpRoFU3oA2gWR0CXjMGcnVoYdX2UKGgGaAloD0MI/InKhjWWYECUhpRSlGgVTegDaBZHQJeNUZl4C6p1fZQoaAZoCWgPQwhpGhTNA0pgQJSGlFKUaBVN6ANoFkdAl42KUiY9gXV9lChoBmgJaA9DCCqpE9DEtmBAlIaUUpRoFU3oA2gWR0CXjaNBnjABdX2UKGgGaAloD0MIidLe4AvUY0CUhpRSlGgVTegDaBZHQJeS87KaG6B1fZQoaAZoCWgPQwgx73GmiTdoQJSGlFKUaBVN6ANoFkdAl5XVM7EHdHV9lChoBmgJaA9DCA2NJ4K4q2FAlIaUUpRoFU3oA2gWR0CXlhcvM8oydX2UKGgGaAloD0MILuV8sfdOSkCUhpRSlGgVS8poFkdAl5bGIO6NEXV9lChoBmgJaA9DCCWTUzvD1GZAlIaUUpRoFU3oA2gWR0CXmPlhgE2YdX2UKGgGaAloD0MIHsNjP4scYkCUhpRSlGgVTegDaBZHQJedkrAgxJx1fZQoaAZoCWgPQwgPXyaKEN5mQJSGlFKUaBVN6ANoFkdAl5/qgmJFb3V9lChoBmgJaA9DCGiSWFLuIjxAlIaUUpRoFUvsaBZHQJeiQWO6unx1fZQoaAZoCWgPQwiq8j0jEao+QJSGlFKUaBVL52gWR0CXorj7hvR7dX2UKGgGaAloD0MIgSBAhg4vYUCUhpRSlGgVTegDaBZHQJexJVhkRSR1fZQoaAZoCWgPQwgRcXMqGThlQJSGlFKUaBVN6ANoFkdAl7GWnbZezHV9lChoBmgJaA9DCDM0nghip3FAlIaUUpRoFU11A2gWR0CXt7c0tRNzdX2UKGgGaAloD0MI3dPVHQvfZ0CUhpRSlGgVTegDaBZHQJe6hS75Ec91fZQoaAZoCWgPQwgIyQIm8LViQJSGlFKUaBVN6ANoFkdAl9RrDye7MHV9lChoBmgJaA9DCB1YjpABS2JAlIaUUpRoFU3oA2gWR0CX1cJb+tKadX2UKGgGaAloD0MI9pfdk4eHZ0CUhpRSlGgVTegDaBZHQJfWm/Dcdo51fZQoaAZoCWgPQwiWBRN/lMNkQJSGlFKUaBVN6ANoFkdAl9bU384xUXV9lChoBmgJaA9DCGdHqu/8BmVAlIaUUpRoFU3oA2gWR0CX1vBVMmF8dX2UKGgGaAloD0MIRL+2fvqyZECUhpRSlGgVTegDaBZHQJfcTbGm1pl1fZQoaAZoCWgPQwgiHLPsSYRhQJSGlFKUaBVN6ANoFkdAl998PBi1A3V9lChoBmgJaA9DCMdMol7wK2dAlIaUUpRoFU3oA2gWR0CX5EVaOgg6dX2UKGgGaAloD0MIf2q8dJPFXUCUhpRSlGgVTegDaBZHQJfrb2lEZzh1fZQoaAZoCWgPQwh/9bhvNUtnQJSGlFKUaBVN6ANoFkdAl+9HQhOgx3V9lChoBmgJaA9DCJOQSNt4EGJAlIaUUpRoFU3oA2gWR0CX8kMNc4YKdX2UKGgGaAloD0MIr+3tlmT0Y0CUhpRSlGgVTegDaBZHQJfyw7nxJ/Z1fZQoaAZoCWgPQwgNVTGVfkdkQJSGlFKUaBVN6ANoFkdAmAGO1v2oN3V9lChoBmgJaA9DCH0/NV66uWNAlIaUUpRoFU3oA2gWR0CYAf8Yht+DdX2UKGgGaAloD0MImRBzSdUJX0CUhpRSlGgVTegDaBZHQJgIPah6By11fZQoaAZoCWgPQwi2SUVj7YRjQJSGlFKUaBVN6ANoFkdAmAr7HMlkY3V9lChoBmgJaA9DCHaMKy4OZWhAlIaUUpRoFU3oA2gWR0CYJStMfzSUdX2UKGgGaAloD0MIQE0tW2uFcUCUhpRSlGgVTTgCaBZHQJgmXW5H3Dh1fZQoaAZoCWgPQwhI3GPpw2ljQJSGlFKUaBVN6ANoFkdAmCaGxhUip3V9lChoBmgJaA9DCE4pr5VQo2VAlIaUUpRoFU3oA2gWR0CYJ1j7ALy+dX2UKGgGaAloD0MITwZHyauOYkCUhpRSlGgVTegDaBZHQJgnkOoYNy51fZQoaAZoCWgPQwjTvySVKcpjQJSGlFKUaBVN6ANoFkdAmCeq4YrJ83V9lChoBmgJaA9DCJ54zhaQv29AlIaUUpRoFU3CA2gWR0CYKvzJp35fdX2UKGgGaAloD0MIJ4kl5S5mckCUhpRSlGgVTQMDaBZHQJgr3uYx+KF1fZQoaAZoCWgPQwil9bcEYEViQJSGlFKUaBVN6ANoFkdAmC+WzfJmunV9lChoBmgJaA9DCDoDIy9rpmNAlIaUUpRoFU3oA2gWR0CYMpkI5YHPdX2UKGgGaAloD0MIr1+wGzZlcUCUhpRSlGgVTX8BaBZHQJg5T1RLsa91fZQoaAZoCWgPQwhUyQBQRYxmQJSGlFKUaBVN6ANoFkdAmDmHRgJC0HV9lChoBmgJaA9DCIkJavgWI2RAlIaUUpRoFU3oA2gWR0CYPF3ueBhAdX2UKGgGaAloD0MICmmNQafSZ0CUhpRSlGgVTegDaBZHQJhKx6Rhc7h1fZQoaAZoCWgPQwiIuDmVDLhoQJSGlFKUaBVN6ANoFkdAmEtCkwevIXV9lChoBmgJaA9DCAskKH7MPHJAlIaUUpRoFU3sAmgWR0CYT8NPP9k0dX2UKGgGaAloD0MIIQIOoUrYZECUhpRSlGgVTegDaBZHQJhSEjyFwkx1fZQoaAZoCWgPQwgO2quPh+5nQJSGlFKUaBVN6ANoFkdAmFTJ2dNFjXV9lChoBmgJaA9DCKcIcHoXf2VAlIaUUpRoFU3oA2gWR0CYbt4nF5v+dX2UKGgGaAloD0MIE9VbA9t6ZECUhpRSlGgVTegDaBZHQJhwKSdOIqN1fZQoaAZoCWgPQwhY5NcPMSdjQJSGlFKUaBVN6ANoFkdAmHD2EwnIAHV9lChoBmgJaA9DCCI0go1rxGZAlIaUUpRoFU3oA2gWR0CYcUd2gWaddX2UKGgGaAloD0MIb7w7MlaMZECUhpRSlGgVTegDaBZHQJh0/HBDXvp1fZQoaAZoCWgPQwhF8pVASpheQJSGlFKUaBVN6ANoFkdAmHYGovSMLnV9lChoBmgJaA9DCIF2hxQDzl9AlIaUUpRoFU3oA2gWR0CYek6pYLb6dX2UKGgGaAloD0MIuFfmrbqGXkCUhpRSlGgVTegDaBZHQJh9ydqcmSh1fZQoaAZoCWgPQwioUUgyq3BnQJSGlFKUaBVN6ANoFkdAmIWKebutwXV9lChoBmgJaA9DCPJfIAiQTF5AlIaUUpRoFU3oA2gWR0CYhcvLowEhdX2UKGgGaAloD0MIblD7rR37YUCUhpRSlGgVTegDaBZHQJiI9JHy3Ct1fZQoaAZoCWgPQwh4t7JEZ+JwQJSGlFKUaBVNtgFoFkdAmIoqEal1sHV9lChoBmgJaA9DCBn/PuNCp2tAlIaUUpRoFU0BA2gWR0CYimchC+lCdX2UKGgGaAloD0MIs7eU88XqZECUhpRSlGgVTegDaBZHQJiXpJZntfJ1fZQoaAZoCWgPQwgWpu81hJlkQJSGlFKUaBVN6ANoFkdAmJvIWLxZuHV9lChoBmgJaA9DCHcRpigX2mZAlIaUUpRoFU3oA2gWR0CYnjysCDEndX2UKGgGaAloD0MIAKsjR7rxYkCUhpRSlGgVTegDaBZHQJihQfaHsTp1fZQoaAZoCWgPQwiyEB0Ch8VxQJSGlFKUaBVNdQNoFkdAmKHPHtF8X3V9lChoBmgJaA9DCCy3tBqS+2pAlIaUUpRoFU1jA2gWR0CYoge9SMtLdX2UKGgGaAloD0MI++k/a76lcECUhpRSlGgVTQkDaBZHQJijHBN21Ul1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5d60a4dca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5d60a4dd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5d60a4ddc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5d60a4de50>", "_build": "<function ActorCriticPolicy._build at 0x7f5d60a4dee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5d60a4df70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5d60a51040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5d60a510d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5d60a51160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5d60a511f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5d60a51280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5d60a4a4e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671291018701875964, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGazRT3/t68/BAITP3kanL6+kia8FgzGPQAAAAAAAAAAzdEuPRjooD4x7he9fGOhvmxFFz2uS5u9AAAAAAAAAADAUWo+qZSWPwIUhj6XXgK/bSrLPv3mvjsAAAAAAAAAAAB6CjwLkXk/SzBQPYFx/r4M2a48bt47vAAAAAAAAAAAAIwnvJR1gz5xnaO7kVCVvrRVTj21mk+9AAAAAAAAAADNtJS7ise/P167Hr1tZZQ9/cTKPJ5mdj0AAAAAAAAAAI2Qxj1PHwk/sSmIvrvE0L6swva8sU3CvQAAAAAAAAAAgEMQvWcDqD+tR/S+dYkrv0wx5TtyrXm9AAAAAAAAAADmUEE9rj+Mug7/vbSrRV8u0SQjuzBkeDMAAIA/AACAP9OxFz6wLrQ/L5wHP/a0uL4DlJA+vksaPgAAAAAAAAAAJlC6vebotT4mUOY+1ZmWvj6wNz41hoo9AAAAAAAAAACge2e+ZDtzP2+dEL+WSA+/qS2ivjlskb4AAAAAAAAAAGYWqryuYaO6FRwBuUmo+bMNEJi6cHwUOAAAgD8AAIA/mkz5PcP0TD8fJZ09+RS3vulUZT7K9oS8AAAAAAAAAACAq469y0ciP3im5DwUF7i+E0/Ou0UpYT0AAAAAAAAAABqRXL24fuW5QCHrsotza7GHvB87PrCxMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMjogCbuOcECUhpRSlIwBbJRL9YwBdJRHQLJvIRkVerx1fZQoaAZoCWgPQwjq6/maZTxuQJSGlFKUaBVL7mgWR0CybyCWqtHQdX2UKGgGaAloD0MIpwaazznTcECUhpRSlGgVS+JoFkdAsm8imuTzNHV9lChoBmgJaA9DCDLGh9nLbnFAlIaUUpRoFUvQaBZHQLJvI/2TPjZ1fZQoaAZoCWgPQwjNkZVfhsxtQJSGlFKUaBVNmQFoFkdAsm8toCdSVHV9lChoBmgJaA9DCE87/DWZtnBAlIaUUpRoFUv7aBZHQLJvO7aIval1fZQoaAZoCWgPQwjr/xzmi8FyQJSGlFKUaBVNCQFoFkdAsm9MkTpPh3V9lChoBmgJaA9DCOjYQSWu33JAlIaUUpRoFUvvaBZHQLJvTQO4G2V1fZQoaAZoCWgPQwgXnpeKzUVwQJSGlFKUaBVL5mgWR0Cyb6/xhDw6dX2UKGgGaAloD0MIowOSsC80ckCUhpRSlGgVS+JoFkdAsm/ipqASWnV9lChoBmgJaA9DCM4ZUdpbRHNAlIaUUpRoFU0mAWgWR0Cyb+pyQxN7dX2UKGgGaAloD0MIGLSQgFGbcUCUhpRSlGgVS99oFkdAsm/zyauwHXV9lChoBmgJaA9DCHv18dB3F3FAlIaUUpRoFU1DAWgWR0CycBBEKE39dX2UKGgGaAloD0MI0ZDxKNWjcUCUhpRSlGgVS9FoFkdAsnA/oQnQY3V9lChoBmgJaA9DCO+pnPaUq29AlIaUUpRoFUv4aBZHQLJwR1oQFs51fZQoaAZoCWgPQwiTjQdbrGhxQJSGlFKUaBVL6WgWR0CycEqJQ+EAdX2UKGgGaAloD0MIq1rSUU6QcUCUhpRSlGgVS9ZoFkdAsnBqHgxagXV9lChoBmgJaA9DCK37x0K0OHBAlIaUUpRoFUvYaBZHQLJwbNgSey11fZQoaAZoCWgPQwhi9rLtdHFxQJSGlFKUaBVL42gWR0CycIFgtvn9dX2UKGgGaAloD0MIsB9ig4X3b0CUhpRSlGgVS+ZoFkdAsnCEtwrDqHV9lChoBmgJaA9DCDv/dtkvk3BAlIaUUpRoFUvpaBZHQLJwlRhc7hh1fZQoaAZoCWgPQwjPTDCc6zdvQJSGlFKUaBVL5GgWR0CycJ0TxoZidX2UKGgGaAloD0MIpOL/jigMbkCUhpRSlGgVS+hoFkdAsnCyOWBz3nV9lChoBmgJaA9DCGgkQiNYt3FAlIaUUpRoFU0KAWgWR0CycOMW9DhMdX2UKGgGaAloD0MI9l0R/K9gc0CUhpRSlGgVS+5oFkdAsnEhMyrPt3V9lChoBmgJaA9DCB1aZDvfQ3FAlIaUUpRoFUvmaBZHQLJxRWKMvRJ1fZQoaAZoCWgPQwhj00ohkKhwQJSGlFKUaBVL5WgWR0CycVWvKU3XdX2UKGgGaAloD0MIV2DI6tYnc0CUhpRSlGgVTQsBaBZHQLJxjqhlDnh1fZQoaAZoCWgPQwiWd9UDJsZwQJSGlFKUaBVL7mgWR0CydrHwTdtVdX2UKGgGaAloD0MIaAWGrG5LcECUhpRSlGgVS+9oFkdAsna4Kneiz3V9lChoBmgJaA9DCPPHtDZNNHFAlIaUUpRoFUvcaBZHQLJ2uhvitJZ1fZQoaAZoCWgPQwj1LXO6LKBxQJSGlFKUaBVLzmgWR0Cydrw6ySmqdX2UKGgGaAloD0MIFJM3wIwacUCUhpRSlGgVTQQBaBZHQLJ21BXjlxR1fZQoaAZoCWgPQwgdyeU/ZNVyQJSGlFKUaBVL5WgWR0CyduEiMYMwdX2UKGgGaAloD0MI+g0TDZKRcUCUhpRSlGgVS/doFkdAsnbm66J66nV9lChoBmgJaA9DCAO2gxF7GHJAlIaUUpRoFUveaBZHQLJ26iTt9hJ1fZQoaAZoCWgPQwgiwr8I2q1zQJSGlFKUaBVL32gWR0CydvVOwgTzdX2UKGgGaAloD0MI2nHD7+YsckCUhpRSlGgVS9RoFkdAsnb/aK1og3V9lChoBmgJaA9DCIU+WMaGcnNAlIaUUpRoFU0EAWgWR0Cyd3wc1fmcdX2UKGgGaAloD0MIteGwNLCJckCUhpRSlGgVS+VoFkdAsneOjwhGIHV9lChoBmgJaA9DCIkJavhWBXFAlIaUUpRoFUvraBZHQLJ3wvkili11fZQoaAZoCWgPQwg4Mo/8ARBxQJSGlFKUaBVL/mgWR0Cyd/40ALiNdX2UKGgGaAloD0MI6sw9JHwcc0CUhpRSlGgVS+RoFkdAsngJplBhQXV9lChoBmgJaA9DCIwtBDkodHFAlIaUUpRoFUvWaBZHQLJ4KJgb6xh1fZQoaAZoCWgPQwjgopOl1htyQJSGlFKUaBVL5GgWR0CyeDuTA31jdX2UKGgGaAloD0MIMGKfAIp1ZUCUhpRSlGgVTfUBaBZHQLJ4QiuuA7R1fZQoaAZoCWgPQwiRYRVv5G5xQJSGlFKUaBVL2GgWR0CyeFHWattAdX2UKGgGaAloD0MIBvGBHX8fckCUhpRSlGgVS+xoFkdAsnhnndO6/nV9lChoBmgJaA9DCKvq5Xda/HFAlIaUUpRoFUv+aBZHQLJ4cKQJXyR1fZQoaAZoCWgPQwjfUWNCjG9yQJSGlFKUaBVL3mgWR0CyeHMvh60IdX2UKGgGaAloD0MIy54ENqfvcUCUhpRSlGgVS+hoFkdAsnh37oB7u3V9lChoBmgJaA9DCCl3n+NjW3FAlIaUUpRoFU0QAWgWR0CyeIbFjurqdX2UKGgGaAloD0MIQdgpVs3fckCUhpRSlGgVTQEBaBZHQLJ4lAKOT7l1fZQoaAZoCWgPQwgldJfEGelxQJSGlFKUaBVNAgFoFkdAsnioI8hcJXV9lChoBmgJaA9DCB2R71Lqp3JAlIaUUpRoFUvoaBZHQLJ5CTvAoG91fZQoaAZoCWgPQwj0/dR4KbFwQJSGlFKUaBVL72gWR0CyeUTEaVD8dX2UKGgGaAloD0MIaf6Y1uZacUCUhpRSlGgVS9ZoFkdAsnlKsFMZg3V9lChoBmgJaA9DCKyql99p6nFAlIaUUpRoFU0jAWgWR0CyeVno9s7/dX2UKGgGaAloD0MIe9l22tqpckCUhpRSlGgVS+JoFkdAsnlqFL39JnV9lChoBmgJaA9DCKDBps6jlXNAlIaUUpRoFUvfaBZHQLJ5kbhm5Dt1fZQoaAZoCWgPQwg661OOybRxQJSGlFKUaBVL6WgWR0CyeZFiONo8dX2UKGgGaAloD0MIO4xJf++FcECUhpRSlGgVS9poFkdAsnnBWYF7lnV9lChoBmgJaA9DCOqScYxkq3NAlIaUUpRoFUvdaBZHQLJ5xG9Htnh1fZQoaAZoCWgPQwgCui9ntq1yQJSGlFKUaBVL8GgWR0CyecdrO7g9dX2UKGgGaAloD0MIOzlDcUeIbUCUhpRSlGgVTQABaBZHQLJ50Zzgdfd1fZQoaAZoCWgPQwgtX5fhPyZvQJSGlFKUaBVL9GgWR0CyeeETDfm+dX2UKGgGaAloD0MI4CpPIKwVcUCUhpRSlGgVS+1oFkdAsnnknG828HV9lChoBmgJaA9DCC0nofRFzHFAlIaUUpRoFUvvaBZHQLJ5937k4m11fZQoaAZoCWgPQwjk9WBS/K5xQJSGlFKUaBVL4GgWR0CyegpA+pwTdX2UKGgGaAloD0MIq8spATHmYcCUhpRSlGgVS3loFkdAsnoKb2Dg63V9lChoBmgJaA9DCF99PPQdgnBAlIaUUpRoFUv7aBZHQLJ6GRq46Op1fZQoaAZoCWgPQwiaQBGLGMtxQJSGlFKUaBVL9mgWR0Cyeo9AX2ugdX2UKGgGaAloD0MIQiPYuL6dcUCUhpRSlGgVS+1oFkdAsnrA0XP7enV9lChoBmgJaA9DCGzrp/9sU3FAlIaUUpRoFUveaBZHQLJ6xoG6f8N1fZQoaAZoCWgPQwjmrE85pslyQJSGlFKUaBVL6WgWR0CyeslSjxkNdX2UKGgGaAloD0MI6spneV7XcUCUhpRSlGgVS/hoFkdAsnsjNyHVPXV9lChoBmgJaA9DCLQB2IAInHBAlIaUUpRoFUvZaBZHQLJ7QKcurZJ1fZQoaAZoCWgPQwh1AwXeiShxQJSGlFKUaBVL3WgWR0Cye0wa72+PdX2UKGgGaAloD0MIW9JRDqaCckCUhpRSlGgVS/NoFkdAsntMUTL4e3V9lChoBmgJaA9DCCaOPBBZSXBAlIaUUpRoFUvraBZHQLJ7Tx2B8QZ1fZQoaAZoCWgPQwizeofbIRBvQJSGlFKUaBVL+GgWR0Cye1qQA+6idX2UKGgGaAloD0MIsI14shskcECUhpRSlGgVTQUBaBZHQLJ7bEVnEl51fZQoaAZoCWgPQwi71t6nqntyQJSGlFKUaBVL42gWR0Cye36zzErHdX2UKGgGaAloD0MI1A0UeGfWcUCUhpRSlGgVS9loFkdAsnt/zH0btXV9lChoBmgJaA9DCBps6jxqm3JAlIaUUpRoFUv0aBZHQLJ7hNfgJkZ1fZQoaAZoCWgPQwh3hqktdQRzQJSGlFKUaBVNPwFoFkdAsnuTEjxCpnV9lChoBmgJaA9DCF8IOe8/fnJAlIaUUpRoFUv4aBZHQLJ7mFBIFvB1fZQoaAZoCWgPQwjiWBe3kRVwQJSGlFKUaBVL7mgWR0CyfARw6ySndX2UKGgGaAloD0MIrcCQ1a3Yb0CUhpRSlGgVS+RoFkdAsnwr91loUXV9lChoBmgJaA9DCICdmzYj8nJAlIaUUpRoFUvqaBZHQLJ8M0EX+ER1fZQoaAZoCWgPQwiSzsDIy7tuQJSGlFKUaBVL8mgWR0CyfDpzo2XLdX2UKGgGaAloD0MIZARUOEJ8ckCUhpRSlGgVS81oFkdAsnx4x0uDjHV9lChoBmgJaA9DCAkbnl6pZm5AlIaUUpRoFUv1aBZHQLJ8k6OYIB11fZQoaAZoCWgPQwgF+G7zRkdyQJSGlFKUaBVL4WgWR0CyfJgDRtxddX2UKGgGaAloD0MIaf6Y1iZLckCUhpRSlGgVS/FoFkdAsnyxHvttynV9lChoBmgJaA9DCP36ITaYB3BAlIaUUpRoFUvgaBZHQLJ8tk7Omix1fZQoaAZoCWgPQwj6tIr+0DZyQJSGlFKUaBVL/2gWR0CyfL5zPrv9dX2UKGgGaAloD0MIw9SWOojbckCUhpRSlGgVS+VoFkdAsnzTvfCQ93V9lChoBmgJaA9DCEJ3SZxVdXJAlIaUUpRoFUvtaBZHQLJ83zP8hs91fZQoaAZoCWgPQwjq0Ol5t9dvQJSGlFKUaBVL3WgWR0CyfOA7YChfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32c1ae55f1452f1b0f2026cfabbb5d8fe5fe5c802ad49b7135a9f05654f11100
|
3 |
+
size 147107
|
ppo-LunarLander-v2-2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2-2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5d60a4dca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5d60a4dd30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5d60a4ddc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5d60a4de50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5d60a4dee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5d60a4df70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5d60a51040>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5d60a510d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5d60a51160>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5d60a511f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5d60a51280>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f5d60a4a4e0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671291018701875964,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGazRT3/t68/BAITP3kanL6+kia8FgzGPQAAAAAAAAAAzdEuPRjooD4x7he9fGOhvmxFFz2uS5u9AAAAAAAAAADAUWo+qZSWPwIUhj6XXgK/bSrLPv3mvjsAAAAAAAAAAAB6CjwLkXk/SzBQPYFx/r4M2a48bt47vAAAAAAAAAAAAIwnvJR1gz5xnaO7kVCVvrRVTj21mk+9AAAAAAAAAADNtJS7ise/P167Hr1tZZQ9/cTKPJ5mdj0AAAAAAAAAAI2Qxj1PHwk/sSmIvrvE0L6swva8sU3CvQAAAAAAAAAAgEMQvWcDqD+tR/S+dYkrv0wx5TtyrXm9AAAAAAAAAADmUEE9rj+Mug7/vbSrRV8u0SQjuzBkeDMAAIA/AACAP9OxFz6wLrQ/L5wHP/a0uL4DlJA+vksaPgAAAAAAAAAAJlC6vebotT4mUOY+1ZmWvj6wNz41hoo9AAAAAAAAAACge2e+ZDtzP2+dEL+WSA+/qS2ivjlskb4AAAAAAAAAAGYWqryuYaO6FRwBuUmo+bMNEJi6cHwUOAAAgD8AAIA/mkz5PcP0TD8fJZ09+RS3vulUZT7K9oS8AAAAAAAAAACAq469y0ciP3im5DwUF7i+E0/Ou0UpYT0AAAAAAAAAABqRXL24fuW5QCHrsotza7GHvB87PrCxMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVLRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMjogCbuOcECUhpRSlIwBbJRL9YwBdJRHQLJvIRkVerx1fZQoaAZoCWgPQwjq6/maZTxuQJSGlFKUaBVL7mgWR0CybyCWqtHQdX2UKGgGaAloD0MIpwaazznTcECUhpRSlGgVS+JoFkdAsm8imuTzNHV9lChoBmgJaA9DCDLGh9nLbnFAlIaUUpRoFUvQaBZHQLJvI/2TPjZ1fZQoaAZoCWgPQwjNkZVfhsxtQJSGlFKUaBVNmQFoFkdAsm8toCdSVHV9lChoBmgJaA9DCE87/DWZtnBAlIaUUpRoFUv7aBZHQLJvO7aIval1fZQoaAZoCWgPQwjr/xzmi8FyQJSGlFKUaBVNCQFoFkdAsm9MkTpPh3V9lChoBmgJaA9DCOjYQSWu33JAlIaUUpRoFUvvaBZHQLJvTQO4G2V1fZQoaAZoCWgPQwgXnpeKzUVwQJSGlFKUaBVL5mgWR0Cyb6/xhDw6dX2UKGgGaAloD0MIowOSsC80ckCUhpRSlGgVS+JoFkdAsm/ipqASWnV9lChoBmgJaA9DCM4ZUdpbRHNAlIaUUpRoFU0mAWgWR0Cyb+pyQxN7dX2UKGgGaAloD0MIGLSQgFGbcUCUhpRSlGgVS99oFkdAsm/zyauwHXV9lChoBmgJaA9DCHv18dB3F3FAlIaUUpRoFU1DAWgWR0CycBBEKE39dX2UKGgGaAloD0MI0ZDxKNWjcUCUhpRSlGgVS9FoFkdAsnA/oQnQY3V9lChoBmgJaA9DCO+pnPaUq29AlIaUUpRoFUv4aBZHQLJwR1oQFs51fZQoaAZoCWgPQwiTjQdbrGhxQJSGlFKUaBVL6WgWR0CycEqJQ+EAdX2UKGgGaAloD0MIq1rSUU6QcUCUhpRSlGgVS9ZoFkdAsnBqHgxagXV9lChoBmgJaA9DCK37x0K0OHBAlIaUUpRoFUvYaBZHQLJwbNgSey11fZQoaAZoCWgPQwhi9rLtdHFxQJSGlFKUaBVL42gWR0CycIFgtvn9dX2UKGgGaAloD0MIsB9ig4X3b0CUhpRSlGgVS+ZoFkdAsnCEtwrDqHV9lChoBmgJaA9DCDv/dtkvk3BAlIaUUpRoFUvpaBZHQLJwlRhc7hh1fZQoaAZoCWgPQwjPTDCc6zdvQJSGlFKUaBVL5GgWR0CycJ0TxoZidX2UKGgGaAloD0MIpOL/jigMbkCUhpRSlGgVS+hoFkdAsnCyOWBz3nV9lChoBmgJaA9DCGgkQiNYt3FAlIaUUpRoFU0KAWgWR0CycOMW9DhMdX2UKGgGaAloD0MI9l0R/K9gc0CUhpRSlGgVS+5oFkdAsnEhMyrPt3V9lChoBmgJaA9DCB1aZDvfQ3FAlIaUUpRoFUvmaBZHQLJxRWKMvRJ1fZQoaAZoCWgPQwhj00ohkKhwQJSGlFKUaBVL5WgWR0CycVWvKU3XdX2UKGgGaAloD0MIV2DI6tYnc0CUhpRSlGgVTQsBaBZHQLJxjqhlDnh1fZQoaAZoCWgPQwiWd9UDJsZwQJSGlFKUaBVL7mgWR0CydrHwTdtVdX2UKGgGaAloD0MIaAWGrG5LcECUhpRSlGgVS+9oFkdAsna4Kneiz3V9lChoBmgJaA9DCPPHtDZNNHFAlIaUUpRoFUvcaBZHQLJ2uhvitJZ1fZQoaAZoCWgPQwj1LXO6LKBxQJSGlFKUaBVLzmgWR0Cydrw6ySmqdX2UKGgGaAloD0MIFJM3wIwacUCUhpRSlGgVTQQBaBZHQLJ21BXjlxR1fZQoaAZoCWgPQwgdyeU/ZNVyQJSGlFKUaBVL5WgWR0CyduEiMYMwdX2UKGgGaAloD0MI+g0TDZKRcUCUhpRSlGgVS/doFkdAsnbm66J66nV9lChoBmgJaA9DCAO2gxF7GHJAlIaUUpRoFUveaBZHQLJ26iTt9hJ1fZQoaAZoCWgPQwgiwr8I2q1zQJSGlFKUaBVL32gWR0CydvVOwgTzdX2UKGgGaAloD0MI2nHD7+YsckCUhpRSlGgVS9RoFkdAsnb/aK1og3V9lChoBmgJaA9DCIU+WMaGcnNAlIaUUpRoFU0EAWgWR0Cyd3wc1fmcdX2UKGgGaAloD0MIteGwNLCJckCUhpRSlGgVS+VoFkdAsneOjwhGIHV9lChoBmgJaA9DCIkJavhWBXFAlIaUUpRoFUvraBZHQLJ3wvkili11fZQoaAZoCWgPQwg4Mo/8ARBxQJSGlFKUaBVL/mgWR0Cyd/40ALiNdX2UKGgGaAloD0MI6sw9JHwcc0CUhpRSlGgVS+RoFkdAsngJplBhQXV9lChoBmgJaA9DCIwtBDkodHFAlIaUUpRoFUvWaBZHQLJ4KJgb6xh1fZQoaAZoCWgPQwjgopOl1htyQJSGlFKUaBVL5GgWR0CyeDuTA31jdX2UKGgGaAloD0MIMGKfAIp1ZUCUhpRSlGgVTfUBaBZHQLJ4QiuuA7R1fZQoaAZoCWgPQwiRYRVv5G5xQJSGlFKUaBVL2GgWR0CyeFHWattAdX2UKGgGaAloD0MIBvGBHX8fckCUhpRSlGgVS+xoFkdAsnhnndO6/nV9lChoBmgJaA9DCKvq5Xda/HFAlIaUUpRoFUv+aBZHQLJ4cKQJXyR1fZQoaAZoCWgPQwjfUWNCjG9yQJSGlFKUaBVL3mgWR0CyeHMvh60IdX2UKGgGaAloD0MIy54ENqfvcUCUhpRSlGgVS+hoFkdAsnh37oB7u3V9lChoBmgJaA9DCCl3n+NjW3FAlIaUUpRoFU0QAWgWR0CyeIbFjurqdX2UKGgGaAloD0MIQdgpVs3fckCUhpRSlGgVTQEBaBZHQLJ4lAKOT7l1fZQoaAZoCWgPQwgldJfEGelxQJSGlFKUaBVNAgFoFkdAsnioI8hcJXV9lChoBmgJaA9DCB2R71Lqp3JAlIaUUpRoFUvoaBZHQLJ5CTvAoG91fZQoaAZoCWgPQwj0/dR4KbFwQJSGlFKUaBVL72gWR0CyeUTEaVD8dX2UKGgGaAloD0MIaf6Y1uZacUCUhpRSlGgVS9ZoFkdAsnlKsFMZg3V9lChoBmgJaA9DCKyql99p6nFAlIaUUpRoFU0jAWgWR0CyeVno9s7/dX2UKGgGaAloD0MIe9l22tqpckCUhpRSlGgVS+JoFkdAsnlqFL39JnV9lChoBmgJaA9DCKDBps6jlXNAlIaUUpRoFUvfaBZHQLJ5kbhm5Dt1fZQoaAZoCWgPQwg661OOybRxQJSGlFKUaBVL6WgWR0CyeZFiONo8dX2UKGgGaAloD0MIO4xJf++FcECUhpRSlGgVS9poFkdAsnnBWYF7lnV9lChoBmgJaA9DCOqScYxkq3NAlIaUUpRoFUvdaBZHQLJ5xG9Htnh1fZQoaAZoCWgPQwgCui9ntq1yQJSGlFKUaBVL8GgWR0CyecdrO7g9dX2UKGgGaAloD0MIOzlDcUeIbUCUhpRSlGgVTQABaBZHQLJ50Zzgdfd1fZQoaAZoCWgPQwgtX5fhPyZvQJSGlFKUaBVL9GgWR0CyeeETDfm+dX2UKGgGaAloD0MI4CpPIKwVcUCUhpRSlGgVS+1oFkdAsnnknG828HV9lChoBmgJaA9DCC0nofRFzHFAlIaUUpRoFUvvaBZHQLJ5937k4m11fZQoaAZoCWgPQwjk9WBS/K5xQJSGlFKUaBVL4GgWR0CyegpA+pwTdX2UKGgGaAloD0MIq8spATHmYcCUhpRSlGgVS3loFkdAsnoKb2Dg63V9lChoBmgJaA9DCF99PPQdgnBAlIaUUpRoFUv7aBZHQLJ6GRq46Op1fZQoaAZoCWgPQwiaQBGLGMtxQJSGlFKUaBVL9mgWR0Cyeo9AX2ugdX2UKGgGaAloD0MIQiPYuL6dcUCUhpRSlGgVS+1oFkdAsnrA0XP7enV9lChoBmgJaA9DCGzrp/9sU3FAlIaUUpRoFUveaBZHQLJ6xoG6f8N1fZQoaAZoCWgPQwjmrE85pslyQJSGlFKUaBVL6WgWR0CyeslSjxkNdX2UKGgGaAloD0MI6spneV7XcUCUhpRSlGgVS/hoFkdAsnsjNyHVPXV9lChoBmgJaA9DCLQB2IAInHBAlIaUUpRoFUvZaBZHQLJ7QKcurZJ1fZQoaAZoCWgPQwh1AwXeiShxQJSGlFKUaBVL3WgWR0Cye0wa72+PdX2UKGgGaAloD0MIW9JRDqaCckCUhpRSlGgVS/NoFkdAsntMUTL4e3V9lChoBmgJaA9DCCaOPBBZSXBAlIaUUpRoFUvraBZHQLJ7Tx2B8QZ1fZQoaAZoCWgPQwizeofbIRBvQJSGlFKUaBVL+GgWR0Cye1qQA+6idX2UKGgGaAloD0MIsI14shskcECUhpRSlGgVTQUBaBZHQLJ7bEVnEl51fZQoaAZoCWgPQwi71t6nqntyQJSGlFKUaBVL42gWR0Cye36zzErHdX2UKGgGaAloD0MI1A0UeGfWcUCUhpRSlGgVS9loFkdAsnt/zH0btXV9lChoBmgJaA9DCBps6jxqm3JAlIaUUpRoFUv0aBZHQLJ7hNfgJkZ1fZQoaAZoCWgPQwh3hqktdQRzQJSGlFKUaBVNPwFoFkdAsnuTEjxCpnV9lChoBmgJaA9DCF8IOe8/fnJAlIaUUpRoFUv4aBZHQLJ7mFBIFvB1fZQoaAZoCWgPQwjiWBe3kRVwQJSGlFKUaBVL7mgWR0CyfARw6ySndX2UKGgGaAloD0MIrcCQ1a3Yb0CUhpRSlGgVS+RoFkdAsnwr91loUXV9lChoBmgJaA9DCICdmzYj8nJAlIaUUpRoFUvqaBZHQLJ8M0EX+ER1fZQoaAZoCWgPQwiSzsDIy7tuQJSGlFKUaBVL8mgWR0CyfDpzo2XLdX2UKGgGaAloD0MIZARUOEJ8ckCUhpRSlGgVS81oFkdAsnx4x0uDjHV9lChoBmgJaA9DCAkbnl6pZm5AlIaUUpRoFUv1aBZHQLJ8k6OYIB11fZQoaAZoCWgPQwgF+G7zRkdyQJSGlFKUaBVL4WgWR0CyfJgDRtxddX2UKGgGaAloD0MIaf6Y1iZLckCUhpRSlGgVS/FoFkdAsnyxHvttynV9lChoBmgJaA9DCP36ITaYB3BAlIaUUpRoFUvgaBZHQLJ8tk7Omix1fZQoaAZoCWgPQwj6tIr+0DZyQJSGlFKUaBVL/2gWR0CyfL5zPrv9dX2UKGgGaAloD0MIw9SWOojbckCUhpRSlGgVS+VoFkdAsnzTvfCQ93V9lChoBmgJaA9DCEJ3SZxVdXJAlIaUUpRoFUvtaBZHQLJ83zP8hs91fZQoaAZoCWgPQwjq0Ol5t9dvQJSGlFKUaBVL3WgWR0CyfOA7YChfdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 492,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.99,
|
82 |
+
"ent_coef": 0.001,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd6a511ad17a1d6bb2f0da80d90414b16423b2d30ac39f2338210d8c8c50f153
|
3 |
+
size 87929
|
ppo-LunarLander-v2-2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f0b9ecbd443394f3fcb889eed31f46afba3902a9f2a31bdb6e69297223c3d44
|
3 |
+
size 43201
|
ppo-LunarLander-v2-2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 268.7678504447849, "std_reward": 23.14999461676897, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-17T16:20:12.791565"}
|