File size: 2,836 Bytes
567b40a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: apache-2.0
base_model: google/flan-t5-large
tags:
- generated_from_trainer
datasets:
- mtc/span_absinth_with_articles_german_faithfulness_detection_dataset
model-index:
- name: google-flan-t5-large_MAX-CONTEXT-LEN-1024_MAX-GEN-LEN-256_span_absinth_faithfulness_multi_label_classification_vertical-base-2024-07-15
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/background-tool/span_absinth_evaluation/runs/ogtrt5rw)
# google-flan-t5-large_MAX-CONTEXT-LEN-1024_MAX-GEN-LEN-256_span_absinth_faithfulness_multi_label_classification_vertical-base-2024-07-15
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the mtc/span_absinth_with_articles_german_faithfulness_detection_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1019
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.461 | 0.1534 | 100 | 0.2231 |
| 0.1298 | 0.3067 | 200 | 0.1552 |
| 0.1306 | 0.4601 | 300 | 0.1427 |
| 0.1075 | 0.6135 | 400 | 0.1253 |
| 0.0819 | 0.7669 | 500 | 0.1211 |
| 0.0991 | 0.9202 | 600 | 0.1101 |
| 0.0921 | 1.0736 | 700 | 0.1100 |
| 0.0692 | 1.2270 | 800 | 0.1066 |
| 0.0557 | 1.3804 | 900 | 0.1091 |
| 0.0546 | 1.5337 | 1000 | 0.1118 |
| 0.0754 | 1.6871 | 1100 | 0.1053 |
| 0.0554 | 1.8405 | 1200 | 0.1047 |
| 0.0585 | 1.9939 | 1300 | 0.1054 |
| 0.058 | 2.1472 | 1400 | 0.1035 |
| 0.0643 | 2.3006 | 1500 | 0.1025 |
| 0.046 | 2.4540 | 1600 | 0.1006 |
| 0.041 | 2.6074 | 1700 | 0.1025 |
| 0.0431 | 2.7607 | 1800 | 0.1023 |
| 0.0367 | 2.9141 | 1900 | 0.1022 |
### Framework versions
- Transformers 4.42.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|