Maciej Lulka
commited on
Commit
·
b4b6bca
1
Parent(s):
d27187b
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.13 +/- 0.35
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:992fef1f88ff3e106bf44afd306d3ff4ff4edf6049ed92b830949da5d1dc66f7
|
3 |
+
size 108107
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f03974aa8b0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f03974ac0f0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674340065072935726,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYjHBPo/KuLyB1Bw/YjHBPo/KuLyB1Bw/YjHBPo/KuLyB1Bw/YjHBPo/KuLyB1Bw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxxBDvjxJgr4iELM/dKq5v+IYzT+ePCu/DNmQvSc/iL4qLz6/HmFzP9ULrT/6XZ+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABiMcE+j8q4vIHUHD9DIas6VRrKuK+weztiMcE+j8q4vIHUHD9DIas6VRrKuK+weztiMcE+j8q4vIHUHD9DIas6VRrKuK+weztiMcE+j8q4vIHUHD9DIas6VRrKuK+wezuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.3773299 -0.02255752 0.61261755]\n [ 0.3773299 -0.02255752 0.61261755]\n [ 0.3773299 -0.02255752 0.61261755]\n [ 0.3773299 -0.02255752 0.61261755]]",
|
60 |
+
"desired_goal": "[[-0.19049369 -0.25446498 1.3989298 ]\n [-1.4505143 1.6023219 -0.6688937 ]\n [-0.07072648 -0.2661068 -0.74290717]\n [ 0.95070064 1.3519236 -1.2450554 ]]",
|
61 |
+
"observation": "[[ 3.7732989e-01 -2.2557525e-02 6.1261755e-01 1.3056177e-03\n -9.6370153e-05 3.8404872e-03]\n [ 3.7732989e-01 -2.2557525e-02 6.1261755e-01 1.3056177e-03\n -9.6370153e-05 3.8404872e-03]\n [ 3.7732989e-01 -2.2557525e-02 6.1261755e-01 1.3056177e-03\n -9.6370153e-05 3.8404872e-03]\n [ 3.7732989e-01 -2.2557525e-02 6.1261755e-01 1.3056177e-03\n -9.6370153e-05 3.8404872e-03]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAc+/RPSaxCj7A/NU9flw9vaju57pPfVI+YuIoPRE+4j3zWXg+3cPgvZbW2T2/bpA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.10250749 0.1354414 0.10448599]\n [-0.04623079 -0.0017695 0.20555614]\n [ 0.04123152 0.11046994 0.24253063]\n [-0.10974858 0.10636632 0.28209493]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIecxAZfz78r+UhpRSlIwBbJRLMowBdJRHQKRMFm03OwB1fZQoaAZoCWgPQwgCEk2giEXlv5SGlFKUaBVLMmgWR0CkS9RJVbRndX2UKGgGaAloD0MIWycuxysQ87+UhpRSlGgVSzJoFkdApEuW1rqMWHV9lChoBmgJaA9DCHo57L5j+O2/lIaUUpRoFUsyaBZHQKRLWtV7x/d1fZQoaAZoCWgPQwirX+l8eNb5v5SGlFKUaBVLMmgWR0CkTVRRMvh7dX2UKGgGaAloD0MIj8Ng/goZ+b+UhpRSlGgVSzJoFkdApE0S2nbZe3V9lChoBmgJaA9DCChk521stvC/lIaUUpRoFUsyaBZHQKRM1VMEidJ1fZQoaAZoCWgPQwjQ7/s3L07tv5SGlFKUaBVLMmgWR0CkTJkpZwGXdX2UKGgGaAloD0MIM/lmmxvT47+UhpRSlGgVSzJoFkdApE5yufVZtHV9lChoBmgJaA9DCD4mUprNY/i/lIaUUpRoFUsyaBZHQKROMHjZL7J1fZQoaAZoCWgPQwgRVmMJa4MFwJSGlFKUaBVLMmgWR0CkTfK7ROUMdX2UKGgGaAloD0MI766zIf8M+b+UhpRSlGgVSzJoFkdApE22V9nbqXV9lChoBmgJaA9DCI6QgTy7fNm/lIaUUpRoFUsyaBZHQKRPrs3Q2Mt1fZQoaAZoCWgPQwhC6+HLRNHzv5SGlFKUaBVLMmgWR0CkT2y8an76dX2UKGgGaAloD0MI5US7Cim/+r+UhpRSlGgVSzJoFkdApE8vUONHY3V9lChoBmgJaA9DCLd++s+an/u/lIaUUpRoFUsyaBZHQKRO8vGIbfh1fZQoaAZoCWgPQwjqdYvAWB/zv5SGlFKUaBVLMmgWR0CkURysS00FdX2UKGgGaAloD0MId/aVB+mp+r+UhpRSlGgVSzJoFkdApFDbWXkYGnV9lChoBmgJaA9DCI3V5v9VR/6/lIaUUpRoFUsyaBZHQKRQniWE9Md1fZQoaAZoCWgPQwhPBHEeTiD3v5SGlFKUaBVLMmgWR0CkUGG5c1O1dX2UKGgGaAloD0MIfEW3XtOD4L+UhpRSlGgVSzJoFkdApFJA08/2TXV9lChoBmgJaA9DCHP0+L1N//O/lIaUUpRoFUsyaBZHQKRR/3BYV7B1fZQoaAZoCWgPQwh9BtSbUfPpv5SGlFKUaBVLMmgWR0CkUcHx8UmEdX2UKGgGaAloD0MII6KYvAHm9L+UhpRSlGgVSzJoFkdApFGFmg8KX3V9lChoBmgJaA9DCD57LlOTIP6/lIaUUpRoFUsyaBZHQKRTVcD8tPJ1fZQoaAZoCWgPQwjjcVEtIkoDwJSGlFKUaBVLMmgWR0CkUxOinHeadX2UKGgGaAloD0MI+nspPGj2+b+UhpRSlGgVSzJoFkdApFLWCAc1fnV9lChoBmgJaA9DCLVQMjm18/m/lIaUUpRoFUsyaBZHQKRSma6z3RJ1fZQoaAZoCWgPQwitTWN7LagAwJSGlFKUaBVLMmgWR0CkVHw3HaN/dX2UKGgGaAloD0MI4uoAiLt6+r+UhpRSlGgVSzJoFkdApFQ55kbxVnV9lChoBmgJaA9DCHZsBOJ1ffW/lIaUUpRoFUsyaBZHQKRT+9dNWU91fZQoaAZoCWgPQwicai3MQrvyv5SGlFKUaBVLMmgWR0CkU79Wp6yCdX2UKGgGaAloD0MIpP56hQW3/L+UhpRSlGgVSzJoFkdApFWceuFHrnV9lChoBmgJaA9DCDaVRWEXpQHAlIaUUpRoFUsyaBZHQKRVWkBS1md1fZQoaAZoCWgPQwj0GOWZlwP+v5SGlFKUaBVLMmgWR0CkVRyT6i0wdX2UKGgGaAloD0MIMXpuoSuxAcCUhpRSlGgVSzJoFkdApFTgF5fMOnV9lChoBmgJaA9DCM8UOq+xy/u/lIaUUpRoFUsyaBZHQKRW4FX7tRh1fZQoaAZoCWgPQwgLJZNTOwP9v5SGlFKUaBVLMmgWR0CkVp5d4VyndX2UKGgGaAloD0MIf95UpMKY/r+UhpRSlGgVSzJoFkdApFZg9aEBbXV9lChoBmgJaA9DCHJw6ZjzTP2/lIaUUpRoFUsyaBZHQKRWJNg0CRx1fZQoaAZoCWgPQwgHsp5affX2v5SGlFKUaBVLMmgWR0CkWBuH31zydX2UKGgGaAloD0MIeJeL+E4M87+UhpRSlGgVSzJoFkdApFfZJXhfjXV9lChoBmgJaA9DCBIWFXE6ifq/lIaUUpRoFUsyaBZHQKRXm3vx6OZ1fZQoaAZoCWgPQwiCc0aU9sb3v5SGlFKUaBVLMmgWR0CkV18VHnU2dX2UKGgGaAloD0MI4UBIFjBB/7+UhpRSlGgVSzJoFkdApFlOL5ylvnV9lChoBmgJaA9DCLfxJyoblvS/lIaUUpRoFUsyaBZHQKRZDG3nZCh1fZQoaAZoCWgPQwhkPEolPCH1v5SGlFKUaBVLMmgWR0CkWM9fTkQxdX2UKGgGaAloD0MIGD4ipkTS8L+UhpRSlGgVSzJoFkdApFiTOPeYUnV9lChoBmgJaA9DCBsPttjt8/S/lIaUUpRoFUsyaBZHQKRaWcHWz4V1fZQoaAZoCWgPQwj5SiAldi34v5SGlFKUaBVLMmgWR0CkWhdgfEGadX2UKGgGaAloD0MI9DXLZaMz8r+UhpRSlGgVSzJoFkdApFnZtHhCMXV9lChoBmgJaA9DCJMYBFYO7fe/lIaUUpRoFUsyaBZHQKRZnk5IYm91fZQoaAZoCWgPQwidSgaAKq71v5SGlFKUaBVLMmgWR0CkW4ERJ2+xdX2UKGgGaAloD0MIBTOmYI2z6b+UhpRSlGgVSzJoFkdApFs+36Q/5nV9lChoBmgJaA9DCHocBvNXCPm/lIaUUpRoFUsyaBZHQKRbANdZ7ol1fZQoaAZoCWgPQwgJbM7BM6HWv5SGlFKUaBVLMmgWR0CkWsSDyvs7dX2UKGgGaAloD0MIuFZ72AsF7r+UhpRSlGgVSzJoFkdApFyd74SHunV9lChoBmgJaA9DCJ55Oey+I/u/lIaUUpRoFUsyaBZHQKRcW1w5vLp1fZQoaAZoCWgPQwh/h6JAn2gBwJSGlFKUaBVLMmgWR0CkXB3Gff4zdX2UKGgGaAloD0MI1A5/TdYIAcCUhpRSlGgVSzJoFkdApFvhW5painV9lChoBmgJaA9DCG4xPzc0JfS/lIaUUpRoFUsyaBZHQKRd6l67dzp1fZQoaAZoCWgPQwi3XWiu00jmv5SGlFKUaBVLMmgWR0CkXagfU4JedX2UKGgGaAloD0MIDw9h/DSu8L+UhpRSlGgVSzJoFkdApF1qPp6hQHV9lChoBmgJaA9DCHcQO1PovPO/lIaUUpRoFUsyaBZHQKRdLeQ+2Vp1fZQoaAZoCWgPQwiBk23gDtT4v5SGlFKUaBVLMmgWR0CkXwxGMGX5dX2UKGgGaAloD0MIzqj5KvmY8L+UhpRSlGgVSzJoFkdApF7KJhvzfHV9lChoBmgJaA9DCKpDboYbsPW/lIaUUpRoFUsyaBZHQKRejJL/S6V1fZQoaAZoCWgPQwhdN6W8VkLvv5SGlFKUaBVLMmgWR0CkXlBpQDV6dX2UKGgGaAloD0MIXRq/8EoS6r+UhpRSlGgVSzJoFkdApGA2pCKJmHV9lChoBmgJaA9DCFbT9UTXBea/lIaUUpRoFUsyaBZHQKRf9FrEcbR1fZQoaAZoCWgPQwi/fR04Z4T8v5SGlFKUaBVLMmgWR0CkX7ZUcXFcdX2UKGgGaAloD0MI6E1FKoyt57+UhpRSlGgVSzJoFkdApF96FIuoP3V9lChoBmgJaA9DCFRXPsvz4OK/lIaUUpRoFUsyaBZHQKRhW6eXiR51fZQoaAZoCWgPQwi5/l2fOevZv5SGlFKUaBVLMmgWR0CkYRmJFb3XdX2UKGgGaAloD0MIm6kQj8RL8L+UhpRSlGgVSzJoFkdApGDb90ihWnV9lChoBmgJaA9DCBjrG5jcKPC/lIaUUpRoFUsyaBZHQKRgn6pHZsd1fZQoaAZoCWgPQwgP7s7abRfvv5SGlFKUaBVLMmgWR0CkYoH446wMdX2UKGgGaAloD0MIXcDLDBtl8L+UhpRSlGgVSzJoFkdApGI/m/336HV9lChoBmgJaA9DCOYCl8eakea/lIaUUpRoFUsyaBZHQKRiAfcvduZ1fZQoaAZoCWgPQwjbTIV4JB7yv5SGlFKUaBVLMmgWR0CkYcWM85jpdX2UKGgGaAloD0MIMdC1L6AX1r+UhpRSlGgVSzJoFkdApGPcYKpkw3V9lChoBmgJaA9DCLUZpyGqcOu/lIaUUpRoFUsyaBZHQKRjmh7mdRR1fZQoaAZoCWgPQwgEPGnhsoriv5SGlFKUaBVLMmgWR0CkY1yKNyYHdX2UKGgGaAloD0MIvvkNEw1S7b+UhpRSlGgVSzJoFkdApGMgQ176YXV9lChoBmgJaA9DCMFz7+GSY+q/lIaUUpRoFUsyaBZHQKRk8sqaw2V1fZQoaAZoCWgPQwi22sNeKOD7v5SGlFKUaBVLMmgWR0CkZLCjL0SRdX2UKGgGaAloD0MICMcsexIY97+UhpRSlGgVSzJoFkdApGRzG96C2HV9lChoBmgJaA9DCMVW0LTEivG/lIaUUpRoFUsyaBZHQKRkNuLrHEN1fZQoaAZoCWgPQwhYy52ZYLj2v5SGlFKUaBVLMmgWR0CkZhhWYF7ldX2UKGgGaAloD0MIiq2gaYmV8r+UhpRSlGgVSzJoFkdApGXV9ORDC3V9lChoBmgJaA9DCO1I9Z1fVPi/lIaUUpRoFUsyaBZHQKRlmCcwxnF1fZQoaAZoCWgPQwizDHGsi1vzv5SGlFKUaBVLMmgWR0CkZVu0TlDGdX2UKGgGaAloD0MImu/gJw5g9r+UhpRSlGgVSzJoFkdApGczWsijcnV9lChoBmgJaA9DCJceTfVkfuq/lIaUUpRoFUsyaBZHQKRm8MpgCwN1fZQoaAZoCWgPQwjChqdXyrLzv5SGlFKUaBVLMmgWR0CkZrM36yjYdX2UKGgGaAloD0MIjEtV2uKa/7+UhpRSlGgVSzJoFkdApGZ20ojOcHV9lChoBmgJaA9DCHxinSrfs+y/lIaUUpRoFUsyaBZHQKRoaE3bVSZ1fZQoaAZoCWgPQwjFVWXfFUH2v5SGlFKUaBVLMmgWR0CkaCX5FgDzdX2UKGgGaAloD0MIasL2kzE+8b+UhpRSlGgVSzJoFkdApGfoWk8A73V9lChoBmgJaA9DCCekNQadkPK/lIaUUpRoFUsyaBZHQKRnq9cry2B1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f9df6fff1579fd068ce7779be5585c6c53a8b8e61e8c1063b8660106d9383e5
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be5eefb31343bb83748416ecba41b64f0e5effdfd2d91aa96b44717a5f55be34
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f03974aa8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f03974ac0f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674340065072935726, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYjHBPo/KuLyB1Bw/YjHBPo/KuLyB1Bw/YjHBPo/KuLyB1Bw/YjHBPo/KuLyB1Bw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxxBDvjxJgr4iELM/dKq5v+IYzT+ePCu/DNmQvSc/iL4qLz6/HmFzP9ULrT/6XZ+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABiMcE+j8q4vIHUHD9DIas6VRrKuK+weztiMcE+j8q4vIHUHD9DIas6VRrKuK+weztiMcE+j8q4vIHUHD9DIas6VRrKuK+weztiMcE+j8q4vIHUHD9DIas6VRrKuK+wezuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3773299 -0.02255752 0.61261755]\n [ 0.3773299 -0.02255752 0.61261755]\n [ 0.3773299 -0.02255752 0.61261755]\n [ 0.3773299 -0.02255752 0.61261755]]", "desired_goal": "[[-0.19049369 -0.25446498 1.3989298 ]\n [-1.4505143 1.6023219 -0.6688937 ]\n [-0.07072648 -0.2661068 -0.74290717]\n [ 0.95070064 1.3519236 -1.2450554 ]]", "observation": "[[ 3.7732989e-01 -2.2557525e-02 6.1261755e-01 1.3056177e-03\n -9.6370153e-05 3.8404872e-03]\n [ 3.7732989e-01 -2.2557525e-02 6.1261755e-01 1.3056177e-03\n -9.6370153e-05 3.8404872e-03]\n [ 3.7732989e-01 -2.2557525e-02 6.1261755e-01 1.3056177e-03\n -9.6370153e-05 3.8404872e-03]\n [ 3.7732989e-01 -2.2557525e-02 6.1261755e-01 1.3056177e-03\n -9.6370153e-05 3.8404872e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAc+/RPSaxCj7A/NU9flw9vaju57pPfVI+YuIoPRE+4j3zWXg+3cPgvZbW2T2/bpA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10250749 0.1354414 0.10448599]\n [-0.04623079 -0.0017695 0.20555614]\n [ 0.04123152 0.11046994 0.24253063]\n [-0.10974858 0.10636632 0.28209493]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIecxAZfz78r+UhpRSlIwBbJRLMowBdJRHQKRMFm03OwB1fZQoaAZoCWgPQwgCEk2giEXlv5SGlFKUaBVLMmgWR0CkS9RJVbRndX2UKGgGaAloD0MIWycuxysQ87+UhpRSlGgVSzJoFkdApEuW1rqMWHV9lChoBmgJaA9DCHo57L5j+O2/lIaUUpRoFUsyaBZHQKRLWtV7x/d1fZQoaAZoCWgPQwirX+l8eNb5v5SGlFKUaBVLMmgWR0CkTVRRMvh7dX2UKGgGaAloD0MIj8Ng/goZ+b+UhpRSlGgVSzJoFkdApE0S2nbZe3V9lChoBmgJaA9DCChk521stvC/lIaUUpRoFUsyaBZHQKRM1VMEidJ1fZQoaAZoCWgPQwjQ7/s3L07tv5SGlFKUaBVLMmgWR0CkTJkpZwGXdX2UKGgGaAloD0MIM/lmmxvT47+UhpRSlGgVSzJoFkdApE5yufVZtHV9lChoBmgJaA9DCD4mUprNY/i/lIaUUpRoFUsyaBZHQKROMHjZL7J1fZQoaAZoCWgPQwgRVmMJa4MFwJSGlFKUaBVLMmgWR0CkTfK7ROUMdX2UKGgGaAloD0MI766zIf8M+b+UhpRSlGgVSzJoFkdApE22V9nbqXV9lChoBmgJaA9DCI6QgTy7fNm/lIaUUpRoFUsyaBZHQKRPrs3Q2Mt1fZQoaAZoCWgPQwhC6+HLRNHzv5SGlFKUaBVLMmgWR0CkT2y8an76dX2UKGgGaAloD0MI5US7Cim/+r+UhpRSlGgVSzJoFkdApE8vUONHY3V9lChoBmgJaA9DCLd++s+an/u/lIaUUpRoFUsyaBZHQKRO8vGIbfh1fZQoaAZoCWgPQwjqdYvAWB/zv5SGlFKUaBVLMmgWR0CkURysS00FdX2UKGgGaAloD0MId/aVB+mp+r+UhpRSlGgVSzJoFkdApFDbWXkYGnV9lChoBmgJaA9DCI3V5v9VR/6/lIaUUpRoFUsyaBZHQKRQniWE9Md1fZQoaAZoCWgPQwhPBHEeTiD3v5SGlFKUaBVLMmgWR0CkUGG5c1O1dX2UKGgGaAloD0MIfEW3XtOD4L+UhpRSlGgVSzJoFkdApFJA08/2TXV9lChoBmgJaA9DCHP0+L1N//O/lIaUUpRoFUsyaBZHQKRR/3BYV7B1fZQoaAZoCWgPQwh9BtSbUfPpv5SGlFKUaBVLMmgWR0CkUcHx8UmEdX2UKGgGaAloD0MII6KYvAHm9L+UhpRSlGgVSzJoFkdApFGFmg8KX3V9lChoBmgJaA9DCD57LlOTIP6/lIaUUpRoFUsyaBZHQKRTVcD8tPJ1fZQoaAZoCWgPQwjjcVEtIkoDwJSGlFKUaBVLMmgWR0CkUxOinHeadX2UKGgGaAloD0MI+nspPGj2+b+UhpRSlGgVSzJoFkdApFLWCAc1fnV9lChoBmgJaA9DCLVQMjm18/m/lIaUUpRoFUsyaBZHQKRSma6z3RJ1fZQoaAZoCWgPQwitTWN7LagAwJSGlFKUaBVLMmgWR0CkVHw3HaN/dX2UKGgGaAloD0MI4uoAiLt6+r+UhpRSlGgVSzJoFkdApFQ55kbxVnV9lChoBmgJaA9DCHZsBOJ1ffW/lIaUUpRoFUsyaBZHQKRT+9dNWU91fZQoaAZoCWgPQwicai3MQrvyv5SGlFKUaBVLMmgWR0CkU79Wp6yCdX2UKGgGaAloD0MIpP56hQW3/L+UhpRSlGgVSzJoFkdApFWceuFHrnV9lChoBmgJaA9DCDaVRWEXpQHAlIaUUpRoFUsyaBZHQKRVWkBS1md1fZQoaAZoCWgPQwj0GOWZlwP+v5SGlFKUaBVLMmgWR0CkVRyT6i0wdX2UKGgGaAloD0MIMXpuoSuxAcCUhpRSlGgVSzJoFkdApFTgF5fMOnV9lChoBmgJaA9DCM8UOq+xy/u/lIaUUpRoFUsyaBZHQKRW4FX7tRh1fZQoaAZoCWgPQwgLJZNTOwP9v5SGlFKUaBVLMmgWR0CkVp5d4VyndX2UKGgGaAloD0MIf95UpMKY/r+UhpRSlGgVSzJoFkdApFZg9aEBbXV9lChoBmgJaA9DCHJw6ZjzTP2/lIaUUpRoFUsyaBZHQKRWJNg0CRx1fZQoaAZoCWgPQwgHsp5affX2v5SGlFKUaBVLMmgWR0CkWBuH31zydX2UKGgGaAloD0MIeJeL+E4M87+UhpRSlGgVSzJoFkdApFfZJXhfjXV9lChoBmgJaA9DCBIWFXE6ifq/lIaUUpRoFUsyaBZHQKRXm3vx6OZ1fZQoaAZoCWgPQwiCc0aU9sb3v5SGlFKUaBVLMmgWR0CkV18VHnU2dX2UKGgGaAloD0MI4UBIFjBB/7+UhpRSlGgVSzJoFkdApFlOL5ylvnV9lChoBmgJaA9DCLfxJyoblvS/lIaUUpRoFUsyaBZHQKRZDG3nZCh1fZQoaAZoCWgPQwhkPEolPCH1v5SGlFKUaBVLMmgWR0CkWM9fTkQxdX2UKGgGaAloD0MIGD4ipkTS8L+UhpRSlGgVSzJoFkdApFiTOPeYUnV9lChoBmgJaA9DCBsPttjt8/S/lIaUUpRoFUsyaBZHQKRaWcHWz4V1fZQoaAZoCWgPQwj5SiAldi34v5SGlFKUaBVLMmgWR0CkWhdgfEGadX2UKGgGaAloD0MI9DXLZaMz8r+UhpRSlGgVSzJoFkdApFnZtHhCMXV9lChoBmgJaA9DCJMYBFYO7fe/lIaUUpRoFUsyaBZHQKRZnk5IYm91fZQoaAZoCWgPQwidSgaAKq71v5SGlFKUaBVLMmgWR0CkW4ERJ2+xdX2UKGgGaAloD0MIBTOmYI2z6b+UhpRSlGgVSzJoFkdApFs+36Q/5nV9lChoBmgJaA9DCHocBvNXCPm/lIaUUpRoFUsyaBZHQKRbANdZ7ol1fZQoaAZoCWgPQwgJbM7BM6HWv5SGlFKUaBVLMmgWR0CkWsSDyvs7dX2UKGgGaAloD0MIuFZ72AsF7r+UhpRSlGgVSzJoFkdApFyd74SHunV9lChoBmgJaA9DCJ55Oey+I/u/lIaUUpRoFUsyaBZHQKRcW1w5vLp1fZQoaAZoCWgPQwh/h6JAn2gBwJSGlFKUaBVLMmgWR0CkXB3Gff4zdX2UKGgGaAloD0MI1A5/TdYIAcCUhpRSlGgVSzJoFkdApFvhW5painV9lChoBmgJaA9DCG4xPzc0JfS/lIaUUpRoFUsyaBZHQKRd6l67dzp1fZQoaAZoCWgPQwi3XWiu00jmv5SGlFKUaBVLMmgWR0CkXagfU4JedX2UKGgGaAloD0MIDw9h/DSu8L+UhpRSlGgVSzJoFkdApF1qPp6hQHV9lChoBmgJaA9DCHcQO1PovPO/lIaUUpRoFUsyaBZHQKRdLeQ+2Vp1fZQoaAZoCWgPQwiBk23gDtT4v5SGlFKUaBVLMmgWR0CkXwxGMGX5dX2UKGgGaAloD0MIzqj5KvmY8L+UhpRSlGgVSzJoFkdApF7KJhvzfHV9lChoBmgJaA9DCKpDboYbsPW/lIaUUpRoFUsyaBZHQKRejJL/S6V1fZQoaAZoCWgPQwhdN6W8VkLvv5SGlFKUaBVLMmgWR0CkXlBpQDV6dX2UKGgGaAloD0MIXRq/8EoS6r+UhpRSlGgVSzJoFkdApGA2pCKJmHV9lChoBmgJaA9DCFbT9UTXBea/lIaUUpRoFUsyaBZHQKRf9FrEcbR1fZQoaAZoCWgPQwi/fR04Z4T8v5SGlFKUaBVLMmgWR0CkX7ZUcXFcdX2UKGgGaAloD0MI6E1FKoyt57+UhpRSlGgVSzJoFkdApF96FIuoP3V9lChoBmgJaA9DCFRXPsvz4OK/lIaUUpRoFUsyaBZHQKRhW6eXiR51fZQoaAZoCWgPQwi5/l2fOevZv5SGlFKUaBVLMmgWR0CkYRmJFb3XdX2UKGgGaAloD0MIm6kQj8RL8L+UhpRSlGgVSzJoFkdApGDb90ihWnV9lChoBmgJaA9DCBjrG5jcKPC/lIaUUpRoFUsyaBZHQKRgn6pHZsd1fZQoaAZoCWgPQwgP7s7abRfvv5SGlFKUaBVLMmgWR0CkYoH446wMdX2UKGgGaAloD0MIXcDLDBtl8L+UhpRSlGgVSzJoFkdApGI/m/336HV9lChoBmgJaA9DCOYCl8eakea/lIaUUpRoFUsyaBZHQKRiAfcvduZ1fZQoaAZoCWgPQwjbTIV4JB7yv5SGlFKUaBVLMmgWR0CkYcWM85jpdX2UKGgGaAloD0MIMdC1L6AX1r+UhpRSlGgVSzJoFkdApGPcYKpkw3V9lChoBmgJaA9DCLUZpyGqcOu/lIaUUpRoFUsyaBZHQKRjmh7mdRR1fZQoaAZoCWgPQwgEPGnhsoriv5SGlFKUaBVLMmgWR0CkY1yKNyYHdX2UKGgGaAloD0MIvvkNEw1S7b+UhpRSlGgVSzJoFkdApGMgQ176YXV9lChoBmgJaA9DCMFz7+GSY+q/lIaUUpRoFUsyaBZHQKRk8sqaw2V1fZQoaAZoCWgPQwi22sNeKOD7v5SGlFKUaBVLMmgWR0CkZLCjL0SRdX2UKGgGaAloD0MICMcsexIY97+UhpRSlGgVSzJoFkdApGRzG96C2HV9lChoBmgJaA9DCMVW0LTEivG/lIaUUpRoFUsyaBZHQKRkNuLrHEN1fZQoaAZoCWgPQwhYy52ZYLj2v5SGlFKUaBVLMmgWR0CkZhhWYF7ldX2UKGgGaAloD0MIiq2gaYmV8r+UhpRSlGgVSzJoFkdApGXV9ORDC3V9lChoBmgJaA9DCO1I9Z1fVPi/lIaUUpRoFUsyaBZHQKRlmCcwxnF1fZQoaAZoCWgPQwizDHGsi1vzv5SGlFKUaBVLMmgWR0CkZVu0TlDGdX2UKGgGaAloD0MImu/gJw5g9r+UhpRSlGgVSzJoFkdApGczWsijcnV9lChoBmgJaA9DCJceTfVkfuq/lIaUUpRoFUsyaBZHQKRm8MpgCwN1fZQoaAZoCWgPQwjChqdXyrLzv5SGlFKUaBVLMmgWR0CkZrM36yjYdX2UKGgGaAloD0MIjEtV2uKa/7+UhpRSlGgVSzJoFkdApGZ20ojOcHV9lChoBmgJaA9DCHxinSrfs+y/lIaUUpRoFUsyaBZHQKRoaE3bVSZ1fZQoaAZoCWgPQwjFVWXfFUH2v5SGlFKUaBVLMmgWR0CkaCX5FgDzdX2UKGgGaAloD0MIasL2kzE+8b+UhpRSlGgVSzJoFkdApGfoWk8A73V9lChoBmgJaA9DCCekNQadkPK/lIaUUpRoFUsyaBZHQKRnq9cry2B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (469 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.132743936125189, "std_reward": 0.3505381317338767, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-21T23:12:52.290486"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e6fbb23a35ee64701a4027533de0cabdd0701b5ba8d94651066344f148aacc7
|
3 |
+
size 3056
|