mtyrrell commited on
Commit
5c7370f
·
1 Parent(s): f74e7e9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -28
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
  license: apache-2.0
 
3
  tags:
4
  - generated_from_trainer
5
  metrics:
@@ -7,17 +8,6 @@ metrics:
7
  model-index:
8
  - name: IKT_classifier_netzero_best
9
  results: []
10
-
11
- widget:
12
- - text: >-
13
- "We have put forth a long-term low- emissions development strategy (LEDS) that aspires to halve emissions from its peak to 33 MtCO2e by 2050, with a view to achieving net-zero emissions as soon as viable in the second half of the century. This will require serious and concerted efforts across our industry, economy and society"
14
- example_title: NET-ZERO
15
- - text: >-
16
- "Unconditional Contribution In the unconditional scenario, GHG emissions would be reduced by 27.56 Mt CO2e (6.73%) below BAU in 2030 in the respective sectors. 26.3 Mt CO2e (95.4%) of this emission reduction will be from the Energy sector while 0.64 (2.3%) and 0.6 (2.2%) Mt CO2e reduction will be from AFOLU (agriculture) and waste sector respectively. There will be no reduction in the IPPU sector. Conditional Contribution In the conditional scenario, GHG emissions would be reduced by 61.9 Mt CO2e (15.12%) below BAU in 2030 in the respective sectors."
17
- example_title: TARGET_FREE
18
- - text: >-
19
- "This land is buffered from the sea by the dyke and a network of drains and pumps will control the water levels in the polder. We have raised the minimum platform levels for new developments from 3m to 4m above the Singapore Height Datum (SHD) since 2011. Presently, critical infrastructure on existing coastal land, notably Changi Airport Terminal 5 and Tuas Port, will be constructed with platform levels at least 5m above SHD."
20
- example_title: NEGATIVE
21
  ---
22
 
23
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -27,13 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
27
 
28
  This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset.
29
  It achieves the following results on the evaluation set:
30
- - Loss: 0.9526
31
- - Precision Macro: 0.7813
32
- - Precision Weighted: 0.8164
33
- - Recall Macro: 0.7734
34
- - Recall Weighted: 0.7812
35
- - F1-score: 0.7644
36
- - Accuracy: 0.7812
37
 
38
  ## Model description
39
 
@@ -59,25 +49,22 @@ The following hyperparameters were used during training:
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_steps: 400.0
62
- - num_epochs: 8
63
 
64
  ### Training results
65
 
66
  | Training Loss | Epoch | Step | Validation Loss | Precision Macro | Precision Weighted | Recall Macro | Recall Weighted | F1-score | Accuracy |
67
  |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:------------:|:---------------:|:--------:|:--------:|
68
- | No log | 1.0 | 114 | 0.8267 | 0.8056 | 0.8151 | 0.6601 | 0.6875 | 0.6418 | 0.6875 |
69
- | No log | 2.0 | 228 | 0.4916 | 0.8095 | 0.8371 | 0.8290 | 0.8125 | 0.8113 | 0.8125 |
70
- | No log | 3.0 | 342 | 0.4784 | 0.8535 | 0.8920 | 0.8682 | 0.875 | 0.8569 | 0.875 |
71
- | No log | 4.0 | 456 | 0.8909 | 0.7813 | 0.8164 | 0.7734 | 0.7812 | 0.7644 | 0.7812 |
72
- | 0.6167 | 5.0 | 570 | 0.6673 | 0.8242 | 0.8650 | 0.8649 | 0.8125 | 0.8260 | 0.8125 |
73
- | 0.6167 | 6.0 | 684 | 0.7110 | 0.8413 | 0.8795 | 0.8845 | 0.8438 | 0.8505 | 0.8438 |
74
- | 0.6167 | 7.0 | 798 | 1.3731 | 0.7778 | 0.8281 | 0.7702 | 0.7188 | 0.7380 | 0.7188 |
75
- | 0.6167 | 8.0 | 912 | 0.9526 | 0.7813 | 0.8164 | 0.7734 | 0.7812 | 0.7644 | 0.7812 |
76
 
77
 
78
  ### Framework versions
79
 
80
- - Transformers 4.30.2
81
  - Pytorch 2.0.1+cu118
82
  - Datasets 2.13.1
83
  - Tokenizers 0.13.3
 
1
  ---
2
  license: apache-2.0
3
+ base_model: sentence-transformers/all-mpnet-base-v2
4
  tags:
5
  - generated_from_trainer
6
  metrics:
 
8
  model-index:
9
  - name: IKT_classifier_netzero_best
10
  results: []
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
17
 
18
  This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.4126
21
+ - Precision Macro: 0.9246
22
+ - Precision Weighted: 0.9248
23
+ - Recall Macro: 0.9209
24
+ - Recall Weighted: 0.9211
25
+ - F1-score: 0.9219
26
+ - Accuracy: 0.9211
27
 
28
  ## Model description
29
 
 
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
  - lr_scheduler_warmup_steps: 400.0
52
+ - num_epochs: 5
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision Macro | Precision Weighted | Recall Macro | Recall Weighted | F1-score | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:------------:|:---------------:|:--------:|:--------:|
58
+ | No log | 1.0 | 113 | 0.7402 | 0.8808 | 0.8847 | 0.8697 | 0.8684 | 0.8694 | 0.8684 |
59
+ | No log | 2.0 | 226 | 0.8484 | 0.84 | 0.8358 | 0.6752 | 0.6842 | 0.6675 | 0.6842 |
60
+ | No log | 3.0 | 339 | 0.3188 | 0.9209 | 0.9229 | 0.9209 | 0.9211 | 0.9200 | 0.9211 |
61
+ | No log | 4.0 | 452 | 0.5524 | 0.8889 | 0.8925 | 0.8718 | 0.8684 | 0.8689 | 0.8684 |
62
+ | 0.5553 | 5.0 | 565 | 0.4126 | 0.9246 | 0.9248 | 0.9209 | 0.9211 | 0.9219 | 0.9211 |
 
 
 
63
 
64
 
65
  ### Framework versions
66
 
67
+ - Transformers 4.31.0
68
  - Pytorch 2.0.1+cu118
69
  - Datasets 2.13.1
70
  - Tokenizers 0.13.3