mtyrrell commited on
Commit
758cccd
·
1 Parent(s): 539dd24

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -28
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
  license: apache-2.0
 
3
  tags:
4
  - generated_from_trainer
5
  metrics:
@@ -7,16 +8,6 @@ metrics:
7
  model-index:
8
  - name: IKT_classifier_transport_ghg_best
9
  results: []
10
- widget:
11
- - text: >-
12
- Forestry, forestry and wildlife: "Unconditional Contribution In the unconditional scenario, GHG emissions would be reduced by 27.56 Mt CO2e (6.73%) below BAU in 2030 in the respective sectors. 26.3 Mt CO2e (95.4%) of this emission reduction will be from the Energy sector while 0.64 (2.3%) and 0.6 (2.2%) Mt CO2e reduction will be from AFOLU (agriculture) and waste sector respectively. There will be no reduction in the IPPU sector. Conditional Contribution In the conditional scenario, GHG emissions would be reduced by 61.9 Mt CO2e (15.12%) below BAU in 2030 in the respective sectors."
13
- example_title: GHG
14
- - text: >-
15
- "Key Long-Term Climate Actions Cleaner and greener vehicles on our roads Singapore is working to enhance the overall carbon efficiency of our land transport system through the large-scale adoption of green vehicles. By 2040, we aim to phase out internal combustion engine vehicles and have all vehicles running on cleaner energy. We will introduce policies and initiatives to encourage the adoption of EVs. The public sector itself will take the lead and progressively procure and use cleaner vehicles."
16
- example_title: NOT_GHG
17
- - text: >-
18
- "This includes installation of rooftop PV panels for electricity generation, 5,300 solar water heaters, and expand the use of LED lighting in residential sector by 2030. • Expanding on energy efficiency labels and specifications for appliances programme, elimination of non-energy efficient equipment, and raising awareness among consumers on purchasing alternative energy efficient home appliances."
19
- example_title: NEGATIVE
20
  ---
21
 
22
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -24,15 +15,15 @@ should probably proofread and complete it, then remove this comment. -->
24
 
25
  # IKT_classifier_transport_ghg_best
26
 
27
- This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the GIZ/policy_qa_v0_1 dataset.
28
  It achieves the following results on the evaluation set:
29
- - Loss: 0.5948
30
- - Precision Macro: 0.8995
31
- - Precision Weighted: 0.8712
32
- - Recall Macro: 0.8177
33
- - Recall Weighted: 0.8605
34
- - F1-score: 0.8456
35
- - Accuracy: 0.8605
36
 
37
  ## Model description
38
 
@@ -58,25 +49,22 @@ The following hyperparameters were used during training:
58
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
  - lr_scheduler_type: linear
60
  - lr_scheduler_warmup_steps: 100.0
61
- - num_epochs: 8
62
 
63
  ### Training results
64
 
65
  | Training Loss | Epoch | Step | Validation Loss | Precision Macro | Precision Weighted | Recall Macro | Recall Weighted | F1-score | Accuracy |
66
  |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:------------:|:---------------:|:--------:|:--------:|
67
- | No log | 1.0 | 52 | 0.9196 | 0.5132 | 0.6619 | 0.5936 | 0.7674 | 0.5493 | 0.7674 |
68
- | No log | 2.0 | 104 | 0.4997 | 0.9079 | 0.8830 | 0.7807 | 0.8605 | 0.8112 | 0.8605 |
69
- | No log | 3.0 | 156 | 0.4113 | 0.7992 | 0.8372 | 0.7992 | 0.8372 | 0.7992 | 0.8372 |
70
- | No log | 4.0 | 208 | 0.3726 | 0.9186 | 0.8935 | 0.8713 | 0.8837 | 0.8898 | 0.8837 |
71
- | No log | 5.0 | 260 | 0.5869 | 0.8687 | 0.8312 | 0.7446 | 0.8140 | 0.7758 | 0.8140 |
72
- | No log | 6.0 | 312 | 0.5321 | 0.8463 | 0.8593 | 0.8168 | 0.8605 | 0.8293 | 0.8605 |
73
- | No log | 7.0 | 364 | 0.5608 | 0.9149 | 0.8907 | 0.8353 | 0.8837 | 0.8632 | 0.8837 |
74
- | No log | 8.0 | 416 | 0.5948 | 0.8995 | 0.8712 | 0.8177 | 0.8605 | 0.8456 | 0.8605 |
75
 
76
 
77
  ### Framework versions
78
 
79
- - Transformers 4.30.2
80
  - Pytorch 2.0.1+cu118
81
  - Datasets 2.13.1
82
  - Tokenizers 0.13.3
 
1
  ---
2
  license: apache-2.0
3
+ base_model: sentence-transformers/all-mpnet-base-v2
4
  tags:
5
  - generated_from_trainer
6
  metrics:
 
8
  model-index:
9
  - name: IKT_classifier_transport_ghg_best
10
  results: []
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
15
 
16
  # IKT_classifier_transport_ghg_best
17
 
18
+ This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.4763
21
+ - Precision Macro: 0.8974
22
+ - Precision Weighted: 0.8696
23
+ - Recall Macro: 0.8974
24
+ - Recall Weighted: 0.8696
25
+ - F1-score: 0.8974
26
+ - Accuracy: 0.8696
27
 
28
  ## Model description
29
 
 
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
  - lr_scheduler_warmup_steps: 100.0
52
+ - num_epochs: 5
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision Macro | Precision Weighted | Recall Macro | Recall Weighted | F1-score | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:------------:|:---------------:|:--------:|:--------:|
58
+ | No log | 1.0 | 52 | 0.2945 | 0.9149 | 0.8923 | 0.9149 | 0.8913 | 0.9145 | 0.8913 |
59
+ | No log | 2.0 | 104 | 0.5662 | 0.8361 | 0.7928 | 0.8307 | 0.7826 | 0.8280 | 0.7826 |
60
+ | No log | 3.0 | 156 | 0.5846 | 0.8201 | 0.8059 | 0.8474 | 0.8043 | 0.8300 | 0.8043 |
61
+ | No log | 4.0 | 208 | 0.4326 | 0.9149 | 0.8923 | 0.9149 | 0.8913 | 0.9145 | 0.8913 |
62
+ | No log | 5.0 | 260 | 0.4763 | 0.8974 | 0.8696 | 0.8974 | 0.8696 | 0.8974 | 0.8696 |
 
 
 
63
 
64
 
65
  ### Framework versions
66
 
67
+ - Transformers 4.31.0
68
  - Pytorch 2.0.1+cu118
69
  - Datasets 2.13.1
70
  - Tokenizers 0.13.3