--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy model-index: - name: reverse_add_replicate results: [] --- # reverse_add_replicate This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:--------:| | No log | 0 | 0 | 2.6817 | 0.0 | | 4.4613 | 0.0064 | 100 | 2.3109 | 0.0 | | 4.335 | 0.0128 | 200 | 2.2529 | 0.0 | | 4.2668 | 0.0192 | 300 | 2.1999 | 0.0 | | 4.1908 | 0.0256 | 400 | 2.2754 | 0.0 | | 4.2314 | 0.032 | 500 | 2.2359 | 0.0 | | 3.6347 | 0.0384 | 600 | 1.8769 | 0.0 | | 3.4763 | 0.0448 | 700 | 1.9187 | 0.0 | | 3.1229 | 0.0512 | 800 | 1.9776 | 0.0 | | 2.8398 | 0.0576 | 900 | 1.6601 | 0.0 | | 3.0181 | 0.064 | 1000 | 1.6472 | 0.0 | | 3.0209 | 0.0704 | 1100 | 1.6118 | 0.0 | | 2.5603 | 0.0768 | 1200 | 1.3266 | 0.002 | | 2.6247 | 0.0832 | 1300 | 1.4725 | 0.0 | | 2.502 | 0.0896 | 1400 | 1.4013 | 0.0 | | 2.6392 | 0.096 | 1500 | 1.6963 | 0.0 | | 2.3297 | 0.1024 | 1600 | 1.5349 | 0.001 | | 2.4639 | 0.1088 | 1700 | 1.3084 | 0.001 | | 2.4555 | 0.1152 | 1800 | 1.3022 | 0.0 | | 2.1326 | 0.1216 | 1900 | 1.2985 | 0.002 | | 2.2766 | 0.128 | 2000 | 1.2175 | 0.0 | | 2.5442 | 0.1344 | 2100 | 1.2973 | 0.0 | | 2.3005 | 0.1408 | 2200 | 1.4224 | 0.0 | | 2.4872 | 0.1472 | 2300 | 1.3877 | 0.001 | | 2.3095 | 0.1536 | 2400 | 1.2081 | 0.002 | | 2.3245 | 0.16 | 2500 | 1.2708 | 0.001 | | 2.6165 | 0.1664 | 2600 | 1.5453 | 0.001 | | 2.2608 | 0.1728 | 2700 | 1.2128 | 0.002 | | 2.3363 | 0.1792 | 2800 | 1.2837 | 0.002 | | 2.262 | 0.1856 | 2900 | 1.2287 | 0.007 | | 2.1686 | 0.192 | 3000 | 1.3750 | 0.0 | | 2.3021 | 0.1984 | 3100 | 1.1819 | 0.005 | | 1.8808 | 0.2048 | 3200 | 1.1540 | 0.003 | | 2.5449 | 0.2112 | 3300 | 1.1970 | 0.0 | | 2.1555 | 0.2176 | 3400 | 1.1703 | 0.001 | | 1.8908 | 0.224 | 3500 | 1.2023 | 0.003 | | 2.074 | 0.2304 | 3600 | 1.3576 | 0.002 | | 2.2279 | 0.2368 | 3700 | 1.7341 | 0.0 | | 2.4889 | 0.2432 | 3800 | 1.2299 | 0.003 | | 2.0978 | 0.2496 | 3900 | 1.2305 | 0.0 | | 2.6161 | 0.256 | 4000 | 1.8482 | 0.002 | | 1.937 | 0.2624 | 4100 | 1.1050 | 0.005 | | 1.9751 | 0.2688 | 4200 | 1.2011 | 0.003 | | 2.1199 | 0.2752 | 4300 | 1.2652 | 0.004 | | 1.3263 | 0.2816 | 4400 | 0.7553 | 0.018 | | 1.6805 | 0.288 | 4500 | 1.2216 | 0.005 | | 1.1079 | 0.2944 | 4600 | 0.8702 | 0.012 | | 1.4584 | 0.3008 | 4700 | 1.0929 | 0.0 | | 1.1793 | 0.3072 | 4800 | 0.8990 | 0.005 | | 0.7387 | 0.3136 | 4900 | 0.5412 | 0.031 | | 1.4369 | 0.32 | 5000 | 1.4076 | 0.057 | | 0.4073 | 0.3264 | 5100 | 0.4967 | 0.384 | | 0.4319 | 0.3328 | 5200 | 0.4954 | 0.22 | | 0.4177 | 0.3392 | 5300 | 0.5079 | 0.461 | | 0.3973 | 0.3456 | 5400 | 0.4415 | 0.377 | | 0.7054 | 0.352 | 5500 | 0.6503 | 0.1 | | 0.5802 | 0.3584 | 5600 | 0.8201 | 0.063 | | 0.1897 | 0.3648 | 5700 | 0.2479 | 0.462 | | 0.3982 | 0.3712 | 5800 | 1.3623 | 0.186 | | 0.6079 | 0.3776 | 5900 | 0.9248 | 0.195 | | 0.2099 | 0.384 | 6000 | 0.4132 | 0.308 | | 0.1991 | 0.3904 | 6100 | 0.1490 | 0.605 | | 0.4226 | 0.3968 | 6200 | 0.5506 | 0.284 | | 1.0515 | 0.4032 | 6300 | 1.1107 | 0.129 | | 0.1014 | 0.4096 | 6400 | 0.2367 | 0.447 | | 0.2219 | 0.416 | 6500 | 0.4163 | 0.347 | | 2.1345 | 0.4224 | 6600 | 1.4566 | 0.0 | | 0.5009 | 0.4288 | 6700 | 0.5398 | 0.158 | | 0.1368 | 0.4352 | 6800 | 0.3955 | 0.17 | | 0.0253 | 0.4416 | 6900 | 0.1468 | 0.629 | | 0.1325 | 0.448 | 7000 | 0.3457 | 0.467 | | 0.1866 | 0.4544 | 7100 | 0.4352 | 0.313 | | 0.6098 | 0.4608 | 7200 | 0.8387 | 0.16 | | 0.1887 | 0.4672 | 7300 | 0.2170 | 0.453 | | 0.058 | 0.4736 | 7400 | 0.0872 | 0.731 | | 0.2518 | 0.48 | 7500 | 0.3798 | 0.267 | | 0.0314 | 0.4864 | 7600 | 0.3710 | 0.311 | | 0.5078 | 0.4928 | 7700 | 0.5315 | 0.18 | | 0.0894 | 0.4992 | 7800 | 0.2551 | 0.366 | | 0.0788 | 0.5056 | 7900 | 0.1619 | 0.468 | | 0.6913 | 0.512 | 8000 | 0.5418 | 0.198 | | 0.2068 | 0.5184 | 8100 | 0.3154 | 0.323 | | 0.8031 | 0.5248 | 8200 | 0.6006 | 0.149 | | 0.0841 | 0.5312 | 8300 | 0.1740 | 0.74 | | 0.1649 | 0.5376 | 8400 | 0.1316 | 0.592 | | 0.4631 | 0.544 | 8500 | 0.5998 | 0.226 | | 0.2732 | 0.5504 | 8600 | 0.7268 | 0.168 | | 0.2153 | 0.5568 | 8700 | 0.2141 | 0.4 | | 0.6022 | 0.5632 | 8800 | 0.3403 | 0.412 | | 0.115 | 0.5696 | 8900 | 0.0905 | 0.712 | | 0.1791 | 0.576 | 9000 | 0.1527 | 0.554 | | 0.2843 | 0.5824 | 9100 | 0.3514 | 0.319 | | 0.0359 | 0.5888 | 9200 | 0.0447 | 0.829 | | 0.018 | 0.5952 | 9300 | 0.0565 | 0.781 | | 0.0363 | 0.6016 | 9400 | 0.1747 | 0.507 | | 0.1352 | 0.608 | 9500 | 0.3075 | 0.498 | | 0.0642 | 0.6144 | 9600 | 0.2735 | 0.475 | | 0.0619 | 0.6208 | 9700 | 0.0728 | 0.773 | | 0.0305 | 0.6272 | 9800 | 0.2225 | 0.694 | | 0.1128 | 0.6336 | 9900 | 0.1043 | 0.649 | | 0.1403 | 0.64 | 10000 | 0.0730 | 0.692 | | 0.1471 | 0.6464 | 10100 | 0.1880 | 0.497 | | 0.0632 | 0.6528 | 10200 | 0.1933 | 0.657 | | 0.0757 | 0.6592 | 10300 | 0.0467 | 0.806 | | 0.0969 | 0.6656 | 10400 | 0.3012 | 0.546 | | 0.0552 | 0.672 | 10500 | 0.2214 | 0.37 | | 0.0821 | 0.6784 | 10600 | 0.2411 | 0.504 | | 0.0254 | 0.6848 | 10700 | 0.1192 | 0.619 | | 0.0058 | 0.6912 | 10800 | 0.0409 | 0.901 | | 0.0343 | 0.6976 | 10900 | 0.1508 | 0.671 | | 0.0357 | 0.704 | 11000 | 0.0646 | 0.766 | | 0.1314 | 0.7104 | 11100 | 0.1610 | 0.558 | | 0.3291 | 0.7168 | 11200 | 1.1259 | 0.282 | | 0.0217 | 0.7232 | 11300 | 0.0448 | 0.855 | | 0.0486 | 0.7296 | 11400 | 0.1727 | 0.719 | | 0.0055 | 0.736 | 11500 | 0.0911 | 0.715 | | 0.028 | 0.7424 | 11600 | 0.0281 | 0.904 | | 0.0518 | 0.7488 | 11700 | 0.2969 | 0.421 | | 0.0049 | 0.7552 | 11800 | 0.0311 | 0.871 | | 0.0044 | 0.7616 | 11900 | 0.0091 | 0.955 | | 0.0158 | 0.768 | 12000 | 0.0036 | 0.979 | | 0.0015 | 0.7744 | 12100 | 0.0169 | 0.919 | | 0.0099 | 0.7808 | 12200 | 0.0078 | 0.961 | | 0.0098 | 0.7872 | 12300 | 0.0123 | 0.952 | | 0.0006 | 0.7936 | 12400 | 0.0065 | 0.966 | | 0.0015 | 0.8 | 12500 | 0.0058 | 0.971 | | 0.0 | 0.8064 | 12600 | 0.0031 | 0.984 | | 0.0002 | 0.8128 | 12700 | 0.0124 | 0.961 | | 0.0002 | 0.8192 | 12800 | 0.0024 | 0.988 | | 0.0 | 0.8256 | 12900 | 0.0034 | 0.987 | | 0.0 | 0.832 | 13000 | 0.0055 | 0.98 | | 0.0 | 0.8384 | 13100 | 0.0063 | 0.979 | | 0.0063 | 0.8448 | 13200 | 0.0082 | 0.958 | | 0.0003 | 0.8512 | 13300 | 0.0016 | 0.993 | | 0.0001 | 0.8576 | 13400 | 0.0007 | 0.996 | | 0.0002 | 0.864 | 13500 | 0.0009 | 0.996 | | 0.0 | 0.8704 | 13600 | 0.0004 | 0.997 | | 0.0 | 0.8768 | 13700 | 0.0072 | 0.971 | | 0.0012 | 0.8832 | 13800 | 0.0011 | 0.995 | | 0.0 | 0.8896 | 13900 | 0.0059 | 0.986 | | 0.0 | 0.896 | 14000 | 0.0091 | 0.981 | | 0.0 | 0.9024 | 14100 | 0.0081 | 0.984 | | 0.0 | 0.9088 | 14200 | 0.0023 | 0.991 | | 0.0 | 0.9152 | 14300 | 0.0031 | 0.991 | | 0.0 | 0.9216 | 14400 | 0.0001 | 0.999 | | 0.0 | 0.928 | 14500 | 0.0001 | 1.0 | | 0.0 | 0.9344 | 14600 | 0.0001 | 1.0 | | 0.0 | 0.9408 | 14700 | 0.0001 | 1.0 | | 0.0 | 0.9472 | 14800 | 0.0000 | 1.0 | | 0.0 | 0.9536 | 14900 | 0.0001 | 1.0 | | 0.0 | 0.96 | 15000 | 0.0000 | 1.0 | | 0.0001 | 0.9664 | 15100 | 0.0000 | 1.0 | | 0.0 | 0.9728 | 15200 | 0.0000 | 1.0 | | 0.0 | 0.9792 | 15300 | 0.0000 | 1.0 | | 0.0 | 0.9856 | 15400 | 0.0000 | 1.0 | | 0.0 | 0.992 | 15500 | 0.0000 | 1.0 | | 0.0 | 0.9984 | 15600 | 0.0000 | 1.0 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.1