File size: 14,754 Bytes
76d1548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
---
base_model: peiyi9979/math-shepherd-mistral-7b-prm
library_name: peft
metrics:
- accuracy
- precision
- recall
- f1
tags:
- generated_from_trainer
model-index:
- name: v1_mistral_lora_real
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# v1_mistral_lora_real

This model is a fine-tuned version of [peiyi9979/math-shepherd-mistral-7b-prm](https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0002
- Accuracy: 1.0
- Precision: 1.0
- Recall: 1.0
- F1: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.7125        | 0.0071 | 10   | 0.5957          | 0.6805   | 0.5472    | 0.6915 | 0.6110 |
| 0.7473        | 0.0143 | 20   | 0.5921          | 0.6931   | 0.5622    | 0.6965 | 0.6222 |
| 0.6843        | 0.0214 | 30   | 0.5800          | 0.7094   | 0.5855    | 0.6816 | 0.6299 |
| 0.7083        | 0.0285 | 40   | 0.5597          | 0.7401   | 0.6432    | 0.6368 | 0.64   |
| 0.6862        | 0.0357 | 50   | 0.5293          | 0.7780   | 0.7216    | 0.6318 | 0.6737 |
| 0.626         | 0.0428 | 60   | 0.4788          | 0.8267   | 0.8107    | 0.6816 | 0.7405 |
| 0.4406        | 0.0499 | 70   | 0.4027          | 0.8917   | 0.8653    | 0.8308 | 0.8477 |
| 0.46          | 0.0571 | 80   | 0.2929          | 0.9386   | 0.9154    | 0.9154 | 0.9154 |
| 0.3254        | 0.0642 | 90   | 0.1629          | 0.9819   | 0.9848    | 0.9652 | 0.9749 |
| 0.2359        | 0.0714 | 100  | 0.0554          | 0.9982   | 0.9950    | 1.0    | 0.9975 |
| 0.263         | 0.0785 | 110  | 0.0200          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.228         | 0.0856 | 120  | 0.0094          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.2553        | 0.0928 | 130  | 0.0114          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1633        | 0.0999 | 140  | 0.0083          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.145         | 0.1070 | 150  | 0.0087          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1409        | 0.1142 | 160  | 0.0041          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1955        | 0.1213 | 170  | 0.0042          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1628        | 0.1284 | 180  | 0.0036          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1454        | 0.1356 | 190  | 0.0019          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1311        | 0.1427 | 200  | 0.0044          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1937        | 0.1498 | 210  | 0.0035          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1059        | 0.1570 | 220  | 0.0020          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1352        | 0.1641 | 230  | 0.0023          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1491        | 0.1712 | 240  | 0.0019          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1245        | 0.1784 | 250  | 0.0012          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1354        | 0.1855 | 260  | 0.0012          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1177        | 0.1927 | 270  | 0.0012          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1424        | 0.1998 | 280  | 0.0008          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1343        | 0.2069 | 290  | 0.0008          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1567        | 0.2141 | 300  | 0.0010          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1094        | 0.2212 | 310  | 0.0009          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1537        | 0.2283 | 320  | 0.0006          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1344        | 0.2355 | 330  | 0.0006          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1286        | 0.2426 | 340  | 0.0006          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.142         | 0.2497 | 350  | 0.0006          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1177        | 0.2569 | 360  | 0.0009          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1383        | 0.2640 | 370  | 0.0009          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1647        | 0.2711 | 380  | 0.0004          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0803        | 0.2783 | 390  | 0.0005          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1476        | 0.2854 | 400  | 0.0004          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1003        | 0.2925 | 410  | 0.0005          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1122        | 0.2997 | 420  | 0.0004          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1867        | 0.3068 | 430  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1216        | 0.3139 | 440  | 0.0005          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1288        | 0.3211 | 450  | 0.0006          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1243        | 0.3282 | 460  | 0.0005          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1127        | 0.3354 | 470  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0775        | 0.3425 | 480  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1246        | 0.3496 | 490  | 0.0004          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0864        | 0.3568 | 500  | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1241        | 0.3639 | 510  | 0.0004          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.109         | 0.3710 | 520  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1117        | 0.3782 | 530  | 0.0004          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1137        | 0.3853 | 540  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1193        | 0.3924 | 550  | 0.0006          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1209        | 0.3996 | 560  | 0.0007          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0934        | 0.4067 | 570  | 0.0007          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1276        | 0.4138 | 580  | 0.0005          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0851        | 0.4210 | 590  | 0.0004          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1056        | 0.4281 | 600  | 0.0005          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0951        | 0.4352 | 610  | 0.0004          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1308        | 0.4424 | 620  | 0.0004          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0814        | 0.4495 | 630  | 0.0004          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0696        | 0.4567 | 640  | 0.0004          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0721        | 0.4638 | 650  | 0.0004          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0962        | 0.4709 | 660  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0829        | 0.4781 | 670  | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1158        | 0.4852 | 680  | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0949        | 0.4923 | 690  | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1287        | 0.4995 | 700  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0834        | 0.5066 | 710  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.099         | 0.5137 | 720  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.12          | 0.5209 | 730  | 0.0004          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0571        | 0.5280 | 740  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1133        | 0.5351 | 750  | 0.0004          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1178        | 0.5423 | 760  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0866        | 0.5494 | 770  | 0.0004          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0964        | 0.5565 | 780  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1165        | 0.5637 | 790  | 0.0004          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1174        | 0.5708 | 800  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1468        | 0.5780 | 810  | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1128        | 0.5851 | 820  | 0.0004          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1446        | 0.5922 | 830  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0961        | 0.5994 | 840  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0736        | 0.6065 | 850  | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0847        | 0.6136 | 860  | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.139         | 0.6208 | 870  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0775        | 0.6279 | 880  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0916        | 0.6350 | 890  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0944        | 0.6422 | 900  | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1242        | 0.6493 | 910  | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0975        | 0.6564 | 920  | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0896        | 0.6636 | 930  | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1359        | 0.6707 | 940  | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0905        | 0.6778 | 950  | 0.0003          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1045        | 0.6850 | 960  | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0806        | 0.6921 | 970  | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1121        | 0.6993 | 980  | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1184        | 0.7064 | 990  | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0945        | 0.7135 | 1000 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1041        | 0.7207 | 1010 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0912        | 0.7278 | 1020 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1167        | 0.7349 | 1030 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0952        | 0.7421 | 1040 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1048        | 0.7492 | 1050 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0877        | 0.7563 | 1060 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1051        | 0.7635 | 1070 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1027        | 0.7706 | 1080 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0802        | 0.7777 | 1090 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1118        | 0.7849 | 1100 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.109         | 0.7920 | 1110 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.097         | 0.7991 | 1120 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1045        | 0.8063 | 1130 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0872        | 0.8134 | 1140 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1075        | 0.8205 | 1150 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1322        | 0.8277 | 1160 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1056        | 0.8348 | 1170 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0884        | 0.8420 | 1180 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1284        | 0.8491 | 1190 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1099        | 0.8562 | 1200 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1023        | 0.8634 | 1210 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.086         | 0.8705 | 1220 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0877        | 0.8776 | 1230 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1032        | 0.8848 | 1240 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1446        | 0.8919 | 1250 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1079        | 0.8990 | 1260 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0716        | 0.9062 | 1270 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1181        | 0.9133 | 1280 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1087        | 0.9204 | 1290 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.086         | 0.9276 | 1300 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.071         | 0.9347 | 1310 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0858        | 0.9418 | 1320 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0859        | 0.9490 | 1330 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1165        | 0.9561 | 1340 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1189        | 0.9633 | 1350 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.142         | 0.9704 | 1360 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1336        | 0.9775 | 1370 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.1183        | 0.9847 | 1380 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.0961        | 0.9918 | 1390 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |
| 0.076         | 0.9989 | 1400 | 0.0002          | 1.0      | 1.0       | 1.0    | 1.0    |


### Framework versions

- PEFT 0.12.0
- Transformers 4.46.0
- Pytorch 2.4.0+cu118
- Datasets 3.0.0
- Tokenizers 0.20.1