File size: 6,779 Bytes
125467f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
library_name: peft
base_model: peiyi9979/math-shepherd-mistral-7b-prm
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: v2b_mistral_lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# v2b_mistral_lora

This model is a fine-tuned version of [peiyi9979/math-shepherd-mistral-7b-prm](https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3066
- Accuracy: 0.8603
- Precision: 0.8713
- Recall: 0.5889
- F1: 0.7028

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 765837
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log        | 0      | 0    | 0.5994          | 0.7384   | 0.6545    | 0.1423 | 0.2338 |
| 0.572         | 0.0186 | 20   | 0.5946          | 0.7395   | 0.6731    | 0.1383 | 0.2295 |
| 0.5829        | 0.0371 | 40   | 0.5678          | 0.7494   | 0.7143    | 0.1779 | 0.2848 |
| 0.4808        | 0.0557 | 60   | 0.5129          | 0.7694   | 0.6744    | 0.3439 | 0.4555 |
| 0.498         | 0.0742 | 80   | 0.4658          | 0.7805   | 0.6708    | 0.4269 | 0.5217 |
| 0.2531        | 0.0928 | 100  | 0.4835          | 0.8016   | 0.7312    | 0.4625 | 0.5666 |
| 0.2925        | 0.1113 | 120  | 0.5003          | 0.8016   | 0.8304    | 0.3676 | 0.5096 |
| 0.1912        | 0.1299 | 140  | 0.4575          | 0.8004   | 0.8411    | 0.3557 | 0.5    |
| 0.1991        | 0.1484 | 160  | 0.4109          | 0.8115   | 0.8374    | 0.4071 | 0.5479 |
| 0.2153        | 0.1670 | 180  | 0.3718          | 0.8337   | 0.8456    | 0.4980 | 0.6269 |
| 0.1638        | 0.1855 | 200  | 0.3657          | 0.8237   | 0.8672    | 0.4387 | 0.5827 |
| 0.2033        | 0.2041 | 220  | 0.3455          | 0.8370   | 0.8354    | 0.5217 | 0.6423 |
| 0.2448        | 0.2226 | 240  | 0.3438          | 0.8381   | 0.8497    | 0.5138 | 0.6404 |
| 0.2337        | 0.2412 | 260  | 0.3705          | 0.8282   | 0.8828    | 0.4466 | 0.5932 |
| 0.1698        | 0.2597 | 280  | 0.3724          | 0.8215   | 0.8710    | 0.4269 | 0.5729 |
| 0.1607        | 0.2783 | 300  | 0.3455          | 0.8293   | 0.8722    | 0.4585 | 0.6010 |
| 0.1671        | 0.2968 | 320  | 0.3371          | 0.8337   | 0.8503    | 0.4941 | 0.625  |
| 0.1809        | 0.3154 | 340  | 0.3406          | 0.8514   | 0.8287    | 0.5929 | 0.6912 |
| 0.1672        | 0.3340 | 360  | 0.3520          | 0.8392   | 0.8699    | 0.5020 | 0.6366 |
| 0.153         | 0.3525 | 380  | 0.3273          | 0.8459   | 0.8562    | 0.5415 | 0.6634 |
| 0.2           | 0.3711 | 400  | 0.3307          | 0.8448   | 0.8599    | 0.5336 | 0.6585 |
| 0.2082        | 0.3896 | 420  | 0.3143          | 0.8603   | 0.8396    | 0.6206 | 0.7136 |
| 0.2051        | 0.4082 | 440  | 0.3139          | 0.8570   | 0.8563    | 0.5889 | 0.6979 |
| 0.0959        | 0.4267 | 460  | 0.3130          | 0.8570   | 0.8523    | 0.5929 | 0.6993 |
| 0.1955        | 0.4453 | 480  | 0.3044          | 0.8592   | 0.8462    | 0.6087 | 0.7080 |
| 0.1904        | 0.4638 | 500  | 0.3389          | 0.8404   | 0.8759    | 0.5020 | 0.6382 |
| 0.1809        | 0.4824 | 520  | 0.3319          | 0.8459   | 0.8701    | 0.5296 | 0.6585 |
| 0.1605        | 0.5009 | 540  | 0.3016          | 0.8614   | 0.8678    | 0.5968 | 0.7073 |
| 0.2123        | 0.5195 | 560  | 0.2983          | 0.8603   | 0.8396    | 0.6206 | 0.7136 |
| 0.2279        | 0.5380 | 580  | 0.3046          | 0.8559   | 0.8361    | 0.6047 | 0.7018 |
| 0.2224        | 0.5566 | 600  | 0.3395          | 0.8381   | 0.8741    | 0.4941 | 0.6313 |
| 0.1655        | 0.5751 | 620  | 0.3388          | 0.8359   | 0.8777    | 0.4822 | 0.6224 |
| 0.1468        | 0.5937 | 640  | 0.3022          | 0.8592   | 0.8424    | 0.6126 | 0.7094 |
| 0.1421        | 0.6122 | 660  | 0.3297          | 0.8437   | 0.8784    | 0.5138 | 0.6484 |
| 0.2483        | 0.6308 | 680  | 0.3060          | 0.8525   | 0.8529    | 0.5731 | 0.6856 |
| 0.1411        | 0.6494 | 700  | 0.3171          | 0.8481   | 0.8537    | 0.5534 | 0.6715 |
| 0.2015        | 0.6679 | 720  | 0.3120          | 0.8525   | 0.8614    | 0.5652 | 0.6826 |
| 0.2216        | 0.6865 | 740  | 0.3030          | 0.8503   | 0.8598    | 0.5573 | 0.6763 |
| 0.1936        | 0.7050 | 760  | 0.3091          | 0.8503   | 0.8598    | 0.5573 | 0.6763 |
| 0.135         | 0.7236 | 780  | 0.3023          | 0.8525   | 0.8529    | 0.5731 | 0.6856 |
| 0.1332        | 0.7421 | 800  | 0.3207          | 0.8437   | 0.8836    | 0.5099 | 0.6466 |
| 0.249         | 0.7607 | 820  | 0.3031          | 0.8592   | 0.8706    | 0.5850 | 0.6998 |
| 0.2033        | 0.7792 | 840  | 0.3076          | 0.8592   | 0.875     | 0.5810 | 0.6983 |
| 0.1418        | 0.7978 | 860  | 0.2998          | 0.8614   | 0.8678    | 0.5968 | 0.7073 |
| 0.1826        | 0.8163 | 880  | 0.3014          | 0.8625   | 0.8728    | 0.5968 | 0.7089 |
| 0.1538        | 0.8349 | 900  | 0.3092          | 0.8614   | 0.8855    | 0.5810 | 0.7017 |
| 0.1762        | 0.8534 | 920  | 0.3011          | 0.8603   | 0.8671    | 0.5929 | 0.7042 |
| 0.1561        | 0.8720 | 940  | 0.2998          | 0.8603   | 0.8671    | 0.5929 | 0.7042 |
| 0.1633        | 0.8905 | 960  | 0.3064          | 0.8570   | 0.8690    | 0.5771 | 0.6936 |
| 0.1452        | 0.9091 | 980  | 0.3034          | 0.8603   | 0.8713    | 0.5889 | 0.7028 |
| 0.086         | 0.9276 | 1000 | 0.3051          | 0.8581   | 0.8698    | 0.5810 | 0.6967 |
| 0.1909        | 0.9462 | 1020 | 0.3055          | 0.8581   | 0.8698    | 0.5810 | 0.6967 |
| 0.2017        | 0.9647 | 1040 | 0.3058          | 0.8581   | 0.8743    | 0.5771 | 0.6952 |
| 0.1828        | 0.9833 | 1060 | 0.3066          | 0.8603   | 0.8713    | 0.5889 | 0.7028 |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3