File size: 5,401 Bytes
e3b9cab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
library_name: peft
base_model: peiyi9979/math-shepherd-mistral-7b-prm
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: v3_mistral_balance1_lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# v3_mistral_balance1_lora

This model is a fine-tuned version of [peiyi9979/math-shepherd-mistral-7b-prm](https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0130
- Accuracy: 0.9980
- Precision: 0.9818
- Recall: 0.9474
- F1: 0.9643

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 8569382
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log        | 0      | 0    | 0.3256          | 0.9369   | 0.1429    | 0.2456 | 0.1806 |
| 0.4529        | 0.0258 | 20   | 0.2883          | 0.9484   | 0.1493    | 0.1754 | 0.1613 |
| 0.2483        | 0.0515 | 40   | 0.1461          | 0.9672   | 0.2       | 0.0526 | 0.0833 |
| 0.1622        | 0.0773 | 60   | 0.1080          | 0.9687   | 0.35      | 0.1228 | 0.1818 |
| 0.1243        | 0.1031 | 80   | 0.0879          | 0.9697   | 0.4524    | 0.3333 | 0.3838 |
| 0.0678        | 0.1289 | 100  | 0.0700          | 0.9692   | 0.4719    | 0.7368 | 0.5753 |
| 0.0301        | 0.1546 | 120  | 0.0474          | 0.9836   | 0.65      | 0.9123 | 0.7591 |
| 0.0105        | 0.1804 | 140  | 0.0342          | 0.9911   | 0.8421    | 0.8421 | 0.8421 |
| 0.041         | 0.2062 | 160  | 0.0333          | 0.9926   | 0.875     | 0.8596 | 0.8673 |
| 0.0291        | 0.2320 | 180  | 0.0268          | 0.9930   | 0.8308    | 0.9474 | 0.8852 |
| 0.0366        | 0.2577 | 200  | 0.0262          | 0.9916   | 0.7941    | 0.9474 | 0.864  |
| 0.0133        | 0.2835 | 220  | 0.0206          | 0.9921   | 0.8154    | 0.9298 | 0.8689 |
| 0.0075        | 0.3093 | 240  | 0.0188          | 0.9955   | 0.9444    | 0.8947 | 0.9189 |
| 0.0036        | 0.3351 | 260  | 0.0168          | 0.9945   | 0.9107    | 0.8947 | 0.9027 |
| 0.0081        | 0.3608 | 280  | 0.0182          | 0.9960   | 0.9153    | 0.9474 | 0.9310 |
| 0.0155        | 0.3866 | 300  | 0.0145          | 0.9980   | 0.9818    | 0.9474 | 0.9643 |
| 0.0075        | 0.4124 | 320  | 0.0165          | 0.9975   | 0.9643    | 0.9474 | 0.9558 |
| 0.0033        | 0.4381 | 340  | 0.0139          | 0.9975   | 0.9643    | 0.9474 | 0.9558 |
| 0.01          | 0.4639 | 360  | 0.0136          | 0.9970   | 0.9474    | 0.9474 | 0.9474 |
| 0.0018        | 0.4897 | 380  | 0.0146          | 0.9970   | 0.9474    | 0.9474 | 0.9474 |
| 0.0006        | 0.5155 | 400  | 0.0138          | 0.9975   | 0.9815    | 0.9298 | 0.9550 |
| 0.003         | 0.5412 | 420  | 0.0135          | 0.9965   | 0.9310    | 0.9474 | 0.9391 |
| 0.0035        | 0.5670 | 440  | 0.0141          | 0.9965   | 0.9808    | 0.8947 | 0.9358 |
| 0.0024        | 0.5928 | 460  | 0.0148          | 0.9965   | 0.9808    | 0.8947 | 0.9358 |
| 0.0203        | 0.6186 | 480  | 0.0136          | 0.9970   | 0.9474    | 0.9474 | 0.9474 |
| 0.0293        | 0.6443 | 500  | 0.0164          | 0.9970   | 0.9811    | 0.9123 | 0.9455 |
| 0.0078        | 0.6701 | 520  | 0.0149          | 0.9970   | 0.9474    | 0.9474 | 0.9474 |
| 0.0291        | 0.6959 | 540  | 0.0147          | 0.9975   | 0.9643    | 0.9474 | 0.9558 |
| 0.0119        | 0.7216 | 560  | 0.0136          | 0.9970   | 0.9474    | 0.9474 | 0.9474 |
| 0.002         | 0.7474 | 580  | 0.0138          | 0.9980   | 0.9818    | 0.9474 | 0.9643 |
| 0.0009        | 0.7732 | 600  | 0.0140          | 0.9980   | 0.9818    | 0.9474 | 0.9643 |
| 0.0022        | 0.7990 | 620  | 0.0134          | 0.9980   | 0.9818    | 0.9474 | 0.9643 |
| 0.0149        | 0.8247 | 640  | 0.0136          | 0.9980   | 0.9818    | 0.9474 | 0.9643 |
| 0.0397        | 0.8505 | 660  | 0.0140          | 0.9980   | 0.9818    | 0.9474 | 0.9643 |
| 0.0058        | 0.8763 | 680  | 0.0135          | 0.9980   | 0.9818    | 0.9474 | 0.9643 |
| 0.0153        | 0.9021 | 700  | 0.0132          | 0.9980   | 0.9818    | 0.9474 | 0.9643 |
| 0.0122        | 0.9278 | 720  | 0.0132          | 0.9980   | 0.9818    | 0.9474 | 0.9643 |
| 0.0276        | 0.9536 | 740  | 0.0132          | 0.9980   | 0.9818    | 0.9474 | 0.9643 |
| 0.0042        | 0.9794 | 760  | 0.0130          | 0.9980   | 0.9818    | 0.9474 | 0.9643 |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3