File size: 11,615 Bytes
4518ba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
---
library_name: peft
base_model: peiyi9979/math-shepherd-mistral-7b-prm
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: v3b_mistral_lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# v3b_mistral_lora

This model is a fine-tuned version of [peiyi9979/math-shepherd-mistral-7b-prm](https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0126
- Accuracy: 0.9936
- Precision: 0.8793
- Recall: 0.9808
- F1: 0.9273

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 765837
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log        | 0      | 0    | 0.3911          | 0.9098   | 0.2222    | 0.4615 | 0.3    |
| 0.7904        | 0.0095 | 20   | 0.3855          | 0.9163   | 0.24      | 0.4615 | 0.3158 |
| 0.6496        | 0.0190 | 40   | 0.3578          | 0.9300   | 0.2603    | 0.3654 | 0.304  |
| 0.5209        | 0.0284 | 60   | 0.3011          | 0.9469   | 0.2941    | 0.1923 | 0.2326 |
| 0.482         | 0.0379 | 80   | 0.2597          | 0.9525   | 0.3478    | 0.1538 | 0.2133 |
| 0.4165        | 0.0474 | 100  | 0.2602          | 0.9549   | 0.4524    | 0.3654 | 0.4043 |
| 0.5055        | 0.0569 | 120  | 0.2183          | 0.9614   | 0.5345    | 0.5962 | 0.5636 |
| 0.2795        | 0.0664 | 140  | 0.1609          | 0.9541   | 0.4699    | 0.75   | 0.5778 |
| 0.3314        | 0.0758 | 160  | 0.1574          | 0.9316   | 0.3659    | 0.8654 | 0.5143 |
| 0.257         | 0.0853 | 180  | 0.1001          | 0.9597   | 0.5119    | 0.8269 | 0.6324 |
| 0.3089        | 0.0948 | 200  | 0.0747          | 0.9750   | 0.6567    | 0.8462 | 0.7395 |
| 0.329         | 0.1043 | 220  | 0.0722          | 0.9742   | 0.6471    | 0.8462 | 0.7333 |
| 0.4088        | 0.1138 | 240  | 0.0581          | 0.9815   | 0.7458    | 0.8462 | 0.7928 |
| 0.2598        | 0.1233 | 260  | 0.0531          | 0.9815   | 0.7458    | 0.8462 | 0.7928 |
| 0.1978        | 0.1327 | 280  | 0.0428          | 0.9863   | 0.8070    | 0.8846 | 0.8440 |
| 0.1661        | 0.1422 | 300  | 0.0452          | 0.9839   | 0.75      | 0.9231 | 0.8276 |
| 0.2944        | 0.1517 | 320  | 0.0511          | 0.9815   | 0.7101    | 0.9423 | 0.8099 |
| 0.2463        | 0.1612 | 340  | 0.0379          | 0.9847   | 0.7463    | 0.9615 | 0.8403 |
| 0.1767        | 0.1707 | 360  | 0.0379          | 0.9871   | 0.7812    | 0.9615 | 0.8621 |
| 0.1581        | 0.1801 | 380  | 0.0315          | 0.9903   | 0.8571    | 0.9231 | 0.8889 |
| 0.1162        | 0.1896 | 400  | 0.0378          | 0.9863   | 0.7692    | 0.9615 | 0.8547 |
| 0.1442        | 0.1991 | 420  | 0.0395          | 0.9855   | 0.7656    | 0.9423 | 0.8448 |
| 0.1957        | 0.2086 | 440  | 0.0343          | 0.9903   | 0.8333    | 0.9615 | 0.8929 |
| 0.2593        | 0.2181 | 460  | 0.0308          | 0.9919   | 0.875     | 0.9423 | 0.9074 |
| 0.1137        | 0.2275 | 480  | 0.0236          | 0.9936   | 0.8929    | 0.9615 | 0.9259 |
| 0.2213        | 0.2370 | 500  | 0.0264          | 0.9879   | 0.7846    | 0.9808 | 0.8718 |
| 0.2092        | 0.2465 | 520  | 0.0336          | 0.9895   | 0.8197    | 0.9615 | 0.8850 |
| 0.2247        | 0.2560 | 540  | 0.0287          | 0.9928   | 0.8909    | 0.9423 | 0.9159 |
| 0.2684        | 0.2655 | 560  | 0.0286          | 0.9919   | 0.8621    | 0.9615 | 0.9091 |
| 0.1485        | 0.2749 | 580  | 0.0354          | 0.9895   | 0.8197    | 0.9615 | 0.8850 |
| 0.1168        | 0.2844 | 600  | 0.0274          | 0.9928   | 0.8909    | 0.9423 | 0.9159 |
| 0.1899        | 0.2939 | 620  | 0.0262          | 0.9911   | 0.8475    | 0.9615 | 0.9009 |
| 0.1626        | 0.3034 | 640  | 0.0274          | 0.9895   | 0.8197    | 0.9615 | 0.8850 |
| 0.1919        | 0.3129 | 660  | 0.0435          | 0.9847   | 0.7324    | 1.0    | 0.8455 |
| 0.1953        | 0.3224 | 680  | 0.0215          | 0.9936   | 0.8929    | 0.9615 | 0.9259 |
| 0.1978        | 0.3318 | 700  | 0.0260          | 0.9903   | 0.8333    | 0.9615 | 0.8929 |
| 0.311         | 0.3413 | 720  | 0.0168          | 0.9944   | 0.9091    | 0.9615 | 0.9346 |
| 0.226         | 0.3508 | 740  | 0.0166          | 0.9928   | 0.8525    | 1.0    | 0.9204 |
| 0.1394        | 0.3603 | 760  | 0.0195          | 0.9919   | 0.85      | 0.9808 | 0.9107 |
| 0.1702        | 0.3698 | 780  | 0.0358          | 0.9855   | 0.75      | 0.9808 | 0.85   |
| 0.1413        | 0.3792 | 800  | 0.0269          | 0.9911   | 0.8361    | 0.9808 | 0.9027 |
| 0.2015        | 0.3887 | 820  | 0.0238          | 0.9911   | 0.8361    | 0.9808 | 0.9027 |
| 0.1752        | 0.3982 | 840  | 0.0253          | 0.9895   | 0.8       | 1.0    | 0.8889 |
| 0.212         | 0.4077 | 860  | 0.0250          | 0.9911   | 0.8475    | 0.9615 | 0.9009 |
| 0.1556        | 0.4172 | 880  | 0.0247          | 0.9928   | 0.8909    | 0.9423 | 0.9159 |
| 0.1495        | 0.4266 | 900  | 0.0141          | 0.9919   | 0.85      | 0.9808 | 0.9107 |
| 0.1666        | 0.4361 | 920  | 0.0187          | 0.9936   | 0.9074    | 0.9423 | 0.9245 |
| 0.1475        | 0.4456 | 940  | 0.0199          | 0.9911   | 0.8361    | 0.9808 | 0.9027 |
| 0.1459        | 0.4551 | 960  | 0.0166          | 0.9919   | 0.8387    | 1.0    | 0.9123 |
| 0.1264        | 0.4646 | 980  | 0.0155          | 0.9936   | 0.8793    | 0.9808 | 0.9273 |
| 0.1389        | 0.4740 | 1000 | 0.0152          | 0.9944   | 0.9091    | 0.9615 | 0.9346 |
| 0.1433        | 0.4835 | 1020 | 0.0147          | 0.9944   | 0.9091    | 0.9615 | 0.9346 |
| 0.1389        | 0.4930 | 1040 | 0.0126          | 0.9968   | 0.9444    | 0.9808 | 0.9623 |
| 0.1452        | 0.5025 | 1060 | 0.0230          | 0.9903   | 0.8125    | 1.0    | 0.8966 |
| 0.1623        | 0.5120 | 1080 | 0.0128          | 0.9952   | 0.9259    | 0.9615 | 0.9434 |
| 0.1179        | 0.5215 | 1100 | 0.0156          | 0.9952   | 0.8966    | 1.0    | 0.9455 |
| 0.1256        | 0.5309 | 1120 | 0.0175          | 0.9952   | 0.9107    | 0.9808 | 0.9444 |
| 0.1536        | 0.5404 | 1140 | 0.0221          | 0.9919   | 0.85      | 0.9808 | 0.9107 |
| 0.1873        | 0.5499 | 1160 | 0.0234          | 0.9903   | 0.8125    | 1.0    | 0.8966 |
| 0.1234        | 0.5594 | 1180 | 0.0174          | 0.9944   | 0.9091    | 0.9615 | 0.9346 |
| 0.205         | 0.5689 | 1200 | 0.0162          | 0.9944   | 0.8814    | 1.0    | 0.9369 |
| 0.1975        | 0.5783 | 1220 | 0.0155          | 0.9944   | 0.9091    | 0.9615 | 0.9346 |
| 0.1302        | 0.5878 | 1240 | 0.0131          | 0.9960   | 0.9123    | 1.0    | 0.9541 |
| 0.2996        | 0.5973 | 1260 | 0.0172          | 0.9944   | 0.8814    | 1.0    | 0.9369 |
| 0.1381        | 0.6068 | 1280 | 0.0145          | 0.9936   | 0.8929    | 0.9615 | 0.9259 |
| 0.1559        | 0.6163 | 1300 | 0.0142          | 0.9936   | 0.8929    | 0.9615 | 0.9259 |
| 0.1588        | 0.6257 | 1320 | 0.0194          | 0.9911   | 0.8361    | 0.9808 | 0.9027 |
| 0.1101        | 0.6352 | 1340 | 0.0149          | 0.9936   | 0.8929    | 0.9615 | 0.9259 |
| 0.1533        | 0.6447 | 1360 | 0.0152          | 0.9936   | 0.8667    | 1.0    | 0.9286 |
| 0.1567        | 0.6542 | 1380 | 0.0139          | 0.9928   | 0.8772    | 0.9615 | 0.9174 |
| 0.1771        | 0.6637 | 1400 | 0.0176          | 0.9936   | 0.8793    | 0.9808 | 0.9273 |
| 0.1531        | 0.6731 | 1420 | 0.0142          | 0.9928   | 0.8772    | 0.9615 | 0.9174 |
| 0.1366        | 0.6826 | 1440 | 0.0157          | 0.9928   | 0.8525    | 1.0    | 0.9204 |
| 0.1597        | 0.6921 | 1460 | 0.0149          | 0.9944   | 0.8814    | 1.0    | 0.9369 |
| 0.1527        | 0.7016 | 1480 | 0.0156          | 0.9919   | 0.8387    | 1.0    | 0.9123 |
| 0.2199        | 0.7111 | 1500 | 0.0137          | 0.9944   | 0.8814    | 1.0    | 0.9369 |
| 0.2215        | 0.7205 | 1520 | 0.0140          | 0.9944   | 0.8814    | 1.0    | 0.9369 |
| 0.199         | 0.7300 | 1540 | 0.0167          | 0.9936   | 0.8667    | 1.0    | 0.9286 |
| 0.1505        | 0.7395 | 1560 | 0.0106          | 0.9960   | 0.9273    | 0.9808 | 0.9533 |
| 0.2082        | 0.7490 | 1580 | 0.0146          | 0.9928   | 0.8525    | 1.0    | 0.9204 |
| 0.1431        | 0.7585 | 1600 | 0.0108          | 0.9944   | 0.8947    | 0.9808 | 0.9358 |
| 0.1388        | 0.7680 | 1620 | 0.0125          | 0.9952   | 0.8966    | 1.0    | 0.9455 |
| 0.1221        | 0.7774 | 1640 | 0.0100          | 0.9960   | 0.9273    | 0.9808 | 0.9533 |
| 0.1571        | 0.7869 | 1660 | 0.0108          | 0.9960   | 0.9273    | 0.9808 | 0.9533 |
| 0.1472        | 0.7964 | 1680 | 0.0115          | 0.9944   | 0.8947    | 0.9808 | 0.9358 |
| 0.1236        | 0.8059 | 1700 | 0.0121          | 0.9936   | 0.8793    | 0.9808 | 0.9273 |
| 0.1477        | 0.8154 | 1720 | 0.0113          | 0.9952   | 0.9107    | 0.9808 | 0.9444 |
| 0.1781        | 0.8248 | 1740 | 0.0139          | 0.9936   | 0.8793    | 0.9808 | 0.9273 |
| 0.1517        | 0.8343 | 1760 | 0.0129          | 0.9936   | 0.8793    | 0.9808 | 0.9273 |
| 0.1811        | 0.8438 | 1780 | 0.0123          | 0.9944   | 0.8947    | 0.9808 | 0.9358 |
| 0.1592        | 0.8533 | 1800 | 0.0136          | 0.9944   | 0.8814    | 1.0    | 0.9369 |
| 0.0799        | 0.8628 | 1820 | 0.0149          | 0.9944   | 0.8814    | 1.0    | 0.9369 |
| 0.1294        | 0.8722 | 1840 | 0.0130          | 0.9944   | 0.8814    | 1.0    | 0.9369 |
| 0.2076        | 0.8817 | 1860 | 0.0121          | 0.9936   | 0.8793    | 0.9808 | 0.9273 |
| 0.1628        | 0.8912 | 1880 | 0.0121          | 0.9936   | 0.8793    | 0.9808 | 0.9273 |
| 0.156         | 0.9007 | 1900 | 0.0128          | 0.9936   | 0.8793    | 0.9808 | 0.9273 |
| 0.0762        | 0.9102 | 1920 | 0.0128          | 0.9936   | 0.8793    | 0.9808 | 0.9273 |
| 0.1372        | 0.9196 | 1940 | 0.0124          | 0.9936   | 0.8793    | 0.9808 | 0.9273 |
| 0.0837        | 0.9291 | 1960 | 0.0123          | 0.9936   | 0.8793    | 0.9808 | 0.9273 |
| 0.1353        | 0.9386 | 1980 | 0.0126          | 0.9936   | 0.8793    | 0.9808 | 0.9273 |
| 0.1914        | 0.9481 | 2000 | 0.0127          | 0.9936   | 0.8793    | 0.9808 | 0.9273 |
| 0.1072        | 0.9576 | 2020 | 0.0127          | 0.9936   | 0.8793    | 0.9808 | 0.9273 |
| 0.2165        | 0.9671 | 2040 | 0.0129          | 0.9936   | 0.8793    | 0.9808 | 0.9273 |
| 0.1417        | 0.9765 | 2060 | 0.0127          | 0.9936   | 0.8793    | 0.9808 | 0.9273 |
| 0.101         | 0.9860 | 2080 | 0.0126          | 0.9936   | 0.8793    | 0.9808 | 0.9273 |
| 0.2136        | 0.9955 | 2100 | 0.0126          | 0.9936   | 0.8793    | 0.9808 | 0.9273 |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3