Model save
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: mtzig/prm800k_llama_debug_full
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: v3c_llama_lora
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# v3c_llama_lora
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [mtzig/prm800k_llama_debug_full](https://huggingface.co/mtzig/prm800k_llama_debug_full) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.4195
|
24 |
+
- Accuracy: 0.8128
|
25 |
+
- Precision: 0.7778
|
26 |
+
- Recall: 0.42
|
27 |
+
- F1: 0.5455
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 4
|
48 |
+
- eval_batch_size: 4
|
49 |
+
- seed: 765837
|
50 |
+
- distributed_type: multi-GPU
|
51 |
+
- num_devices: 4
|
52 |
+
- gradient_accumulation_steps: 4
|
53 |
+
- total_train_batch_size: 64
|
54 |
+
- total_eval_batch_size: 16
|
55 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
56 |
+
- lr_scheduler_type: cosine
|
57 |
+
- lr_scheduler_warmup_ratio: 0.1
|
58 |
+
- num_epochs: 1
|
59 |
+
|
60 |
+
### Training results
|
61 |
+
|
62 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
63 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
64 |
+
| No log | 0 | 0 | 0.6173 | 0.7487 | 1.0 | 0.06 | 0.1132 |
|
65 |
+
| 0.3808 | 0.0492 | 40 | 0.5695 | 0.7487 | 0.8 | 0.08 | 0.1455 |
|
66 |
+
| 0.3036 | 0.0984 | 80 | 0.4816 | 0.7647 | 0.6364 | 0.28 | 0.3889 |
|
67 |
+
| 0.305 | 0.1476 | 120 | 0.4852 | 0.8021 | 0.7241 | 0.42 | 0.5316 |
|
68 |
+
| 0.256 | 0.1967 | 160 | 0.4328 | 0.8021 | 0.7826 | 0.36 | 0.4932 |
|
69 |
+
| 0.2062 | 0.2459 | 200 | 0.4699 | 0.7861 | 0.75 | 0.3 | 0.4286 |
|
70 |
+
| 0.2004 | 0.2951 | 240 | 0.4480 | 0.7807 | 0.7143 | 0.3 | 0.4225 |
|
71 |
+
| 0.2241 | 0.3443 | 280 | 0.4449 | 0.7807 | 0.7143 | 0.3 | 0.4225 |
|
72 |
+
| 0.1505 | 0.3935 | 320 | 0.4088 | 0.8182 | 0.75 | 0.48 | 0.5854 |
|
73 |
+
| 0.1752 | 0.4427 | 360 | 0.4386 | 0.7861 | 0.75 | 0.3 | 0.4286 |
|
74 |
+
| 0.2382 | 0.4919 | 400 | 0.4186 | 0.8128 | 0.7778 | 0.42 | 0.5455 |
|
75 |
+
| 0.238 | 0.5410 | 440 | 0.4313 | 0.7914 | 0.7391 | 0.34 | 0.4658 |
|
76 |
+
| 0.1448 | 0.5902 | 480 | 0.4161 | 0.8128 | 0.7778 | 0.42 | 0.5455 |
|
77 |
+
| 0.2096 | 0.6394 | 520 | 0.4251 | 0.7968 | 0.75 | 0.36 | 0.4865 |
|
78 |
+
| 0.204 | 0.6886 | 560 | 0.4413 | 0.7914 | 0.7391 | 0.34 | 0.4658 |
|
79 |
+
| 0.1545 | 0.7378 | 600 | 0.4312 | 0.7968 | 0.75 | 0.36 | 0.4865 |
|
80 |
+
| 0.1883 | 0.7870 | 640 | 0.4288 | 0.8021 | 0.76 | 0.38 | 0.5067 |
|
81 |
+
| 0.2403 | 0.8362 | 680 | 0.4288 | 0.8021 | 0.76 | 0.38 | 0.5067 |
|
82 |
+
| 0.1937 | 0.8853 | 720 | 0.4245 | 0.8021 | 0.76 | 0.38 | 0.5067 |
|
83 |
+
| 0.164 | 0.9345 | 760 | 0.4182 | 0.8075 | 0.7692 | 0.4 | 0.5263 |
|
84 |
+
| 0.2185 | 0.9837 | 800 | 0.4195 | 0.8128 | 0.7778 | 0.42 | 0.5455 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- PEFT 0.13.2
|
90 |
+
- Transformers 4.46.3
|
91 |
+
- Pytorch 2.5.1+cu124
|
92 |
+
- Datasets 3.1.0
|
93 |
+
- Tokenizers 0.20.3
|