File size: 5,474 Bytes
aaedf8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325ff82
 
 
 
 
aaedf8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325ff82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaedf8c
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
library_name: peft
base_model: peiyi9979/math-shepherd-mistral-7b-prm
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: v4_mistral_lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# v4_mistral_lora

This model is a fine-tuned version of [peiyi9979/math-shepherd-mistral-7b-prm](https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2841
- Accuracy: 0.8687
- Precision: 0.8392
- Recall: 0.6575
- F1: 0.7373

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 8
- seed: 89234
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 3
- total_train_batch_size: 72
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log        | 0      | 0    | 0.5995          | 0.7340   | 0.6       | 0.1535 | 0.2445 |
| 0.6057        | 0.0254 | 20   | 0.5918          | 0.7373   | 0.625     | 0.1575 | 0.2516 |
| 0.5356        | 0.0507 | 40   | 0.5521          | 0.7517   | 0.6790    | 0.2165 | 0.3284 |
| 0.5141        | 0.0761 | 60   | 0.5021          | 0.7627   | 0.5890    | 0.5079 | 0.5455 |
| 0.3594        | 0.1015 | 80   | 0.4427          | 0.7980   | 0.7448    | 0.4252 | 0.5414 |
| 0.3988        | 0.1268 | 100  | 0.4067          | 0.8245   | 0.7684    | 0.5354 | 0.6311 |
| 0.3205        | 0.1522 | 120  | 0.3738          | 0.8201   | 0.8138    | 0.4646 | 0.5915 |
| 0.3026        | 0.1776 | 140  | 0.3680          | 0.8289   | 0.8235    | 0.4961 | 0.6192 |
| 0.2886        | 0.2030 | 160  | 0.3467          | 0.8433   | 0.8590    | 0.5276 | 0.6537 |
| 0.2345        | 0.2283 | 180  | 0.3289          | 0.8587   | 0.7972    | 0.6654 | 0.7253 |
| 0.2964        | 0.2537 | 200  | 0.3322          | 0.8377   | 0.8497    | 0.5118 | 0.6388 |
| 0.2655        | 0.2791 | 220  | 0.3495          | 0.8278   | 0.8657    | 0.4567 | 0.5979 |
| 0.3252        | 0.3044 | 240  | 0.3189          | 0.8455   | 0.8314    | 0.5630 | 0.6714 |
| 0.2561        | 0.3298 | 260  | 0.3228          | 0.8532   | 0.8201    | 0.6102 | 0.6998 |
| 0.1661        | 0.3552 | 280  | 0.3141          | 0.8499   | 0.8598    | 0.5551 | 0.6746 |
| 0.1812        | 0.3805 | 300  | 0.3330          | 0.8300   | 0.8378    | 0.4882 | 0.6169 |
| 0.3265        | 0.4059 | 320  | 0.2961          | 0.8543   | 0.8280    | 0.6063 | 0.7    |
| 0.2217        | 0.4313 | 340  | 0.2970          | 0.8664   | 0.8065    | 0.6890 | 0.7431 |
| 0.2058        | 0.4567 | 360  | 0.3054          | 0.8521   | 0.8333    | 0.5906 | 0.6912 |
| 0.225         | 0.4820 | 380  | 0.3018          | 0.8576   | 0.8531    | 0.5945 | 0.7007 |
| 0.2045        | 0.5074 | 400  | 0.3174          | 0.8510   | 0.8742    | 0.5472 | 0.6731 |
| 0.2368        | 0.5328 | 420  | 0.3156          | 0.8477   | 0.8537    | 0.5512 | 0.6699 |
| 0.2162        | 0.5581 | 440  | 0.2928          | 0.8609   | 0.8441    | 0.6181 | 0.7136 |
| 0.1664        | 0.5835 | 460  | 0.2978          | 0.8598   | 0.8325    | 0.6260 | 0.7146 |
| 0.2282        | 0.6089 | 480  | 0.3031          | 0.8587   | 0.8539    | 0.5984 | 0.7037 |
| 0.1983        | 0.6342 | 500  | 0.2958          | 0.8543   | 0.8177    | 0.6181 | 0.7040 |
| 0.1843        | 0.6596 | 520  | 0.3055          | 0.8609   | 0.8556    | 0.6063 | 0.7097 |
| 0.1915        | 0.6850 | 540  | 0.2818          | 0.8675   | 0.8160    | 0.6811 | 0.7425 |
| 0.1582        | 0.7104 | 560  | 0.2887          | 0.8675   | 0.8641    | 0.6260 | 0.7260 |
| 0.2003        | 0.7357 | 580  | 0.2872          | 0.8653   | 0.8511    | 0.6299 | 0.7240 |
| 0.2345        | 0.7611 | 600  | 0.2827          | 0.8687   | 0.8293    | 0.6693 | 0.7407 |
| 0.2107        | 0.7865 | 620  | 0.2954          | 0.8642   | 0.8701    | 0.6063 | 0.7146 |
| 0.2562        | 0.8118 | 640  | 0.2938          | 0.8642   | 0.8503    | 0.6260 | 0.7211 |
| 0.1054        | 0.8372 | 660  | 0.2917          | 0.8642   | 0.8503    | 0.6260 | 0.7211 |
| 0.2837        | 0.8626 | 680  | 0.2842          | 0.8664   | 0.8376    | 0.6496 | 0.7317 |
| 0.1779        | 0.8879 | 700  | 0.2841          | 0.8709   | 0.8477    | 0.6575 | 0.7406 |
| 0.2277        | 0.9133 | 720  | 0.2847          | 0.8675   | 0.8384    | 0.6535 | 0.7345 |
| 0.2099        | 0.9387 | 740  | 0.2828          | 0.8720   | 0.8485    | 0.6614 | 0.7434 |
| 0.2167        | 0.9641 | 760  | 0.2835          | 0.8709   | 0.8477    | 0.6575 | 0.7406 |
| 0.1901        | 0.9894 | 780  | 0.2841          | 0.8687   | 0.8392    | 0.6575 | 0.7373 |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3