--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - nergrit metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-finetuned-ner-nergrit-8H-light results: - task: name: Token Classification type: token-classification dataset: name: nergrit type: nergrit config: nergrit_ner_seacrowd_seq_label split: validation args: nergrit_ner_seacrowd_seq_label metrics: - name: Precision type: precision value: 0.981006671007531 - name: Recall type: recall value: 0.9810548818694482 - name: F1 type: f1 value: 0.9810307758461823 - name: Accuracy type: accuracy value: 0.9772770466099682 --- # roberta-finetuned-ner-nergrit-8H-light This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the nergrit dataset. It achieves the following results on the evaluation set: - Loss: 0.1130 - Precision: 0.9810 - Recall: 0.9811 - F1: 0.9810 - Accuracy: 0.9773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9994 | 392 | 0.1196 | 0.9793 | 0.9800 | 0.9796 | 0.9757 | | 0.1919 | 1.9987 | 784 | 0.1048 | 0.9810 | 0.9814 | 0.9812 | 0.9775 | | 0.0823 | 2.9981 | 1176 | 0.1130 | 0.9810 | 0.9811 | 0.9810 | 0.9773 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1