mufathurrohman commited on
Commit
4781ef1
·
verified ·
1 Parent(s): aadbc1d

First training complete

Browse files
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: FacebookAI/xlm-roberta-large
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - nergrit
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: roberta-finetuned-ner-nergrit-8H
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: nergrit
21
+ type: nergrit
22
+ config: nergrit_ner_seacrowd_seq_label
23
+ split: test
24
+ args: nergrit_ner_seacrowd_seq_label
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.9846745534461797
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9845249365919796
32
+ - name: F1
33
+ type: f1
34
+ value: 0.9845997393352465
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9810623191027497
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # roberta-finetuned-ner-nergrit-8H
44
+
45
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the nergrit dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.0956
48
+ - Precision: 0.9847
49
+ - Recall: 0.9845
50
+ - F1: 0.9846
51
+ - Accuracy: 0.9811
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 4
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - gradient_accumulation_steps: 8
75
+ - total_train_batch_size: 32
76
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
77
+ - lr_scheduler_type: linear
78
+ - num_epochs: 3
79
+
80
+ ### Training results
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
+ | No log | 0.9995 | 471 | 0.0984 | 0.9819 | 0.9822 | 0.9820 | 0.9782 |
85
+ | 0.1862 | 1.9989 | 942 | 0.0940 | 0.9848 | 0.9834 | 0.9841 | 0.9802 |
86
+ | 0.0843 | 2.9984 | 1413 | 0.0956 | 0.9847 | 0.9845 | 0.9846 | 0.9811 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.42.4
92
+ - Pytorch 2.4.0+cu121
93
+ - Datasets 2.21.0
94
+ - Tokenizers 0.19.1
runs/Aug29_16-56-38_a2a9c631f076/events.out.tfevents.1724950799.a2a9c631f076.240.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5cca29733b0072db434acb25bfff2dd0d17f893b859d52f0baaedc6402725804
3
- size 6602
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a48031c78568bae0f7e4387b8b40fae7af4ca727ebcb04d063d37e09c8f8f0bc
3
+ size 7428