--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: fine-tuned-DatasetQAS-IDK-MRC-with-xlm-roberta-large-with-ITTL-with-freeze-LR-1e-05 results: [] --- # fine-tuned-DatasetQAS-IDK-MRC-with-xlm-roberta-large-with-ITTL-with-freeze-LR-1e-05 This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8236 - Exact Match: 75.9162 - F1: 81.7215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:| | 6.4323 | 0.49 | 36 | 2.3534 | 50.0 | 50.0 | | 3.6036 | 0.98 | 72 | 1.7984 | 47.5131 | 48.0031 | | 1.8711 | 1.48 | 108 | 1.1297 | 59.1623 | 67.4774 | | 1.8711 | 1.97 | 144 | 1.0215 | 62.9581 | 70.7402 | | 1.1663 | 2.46 | 180 | 0.8500 | 69.1099 | 76.2124 | | 0.9042 | 2.95 | 216 | 0.8389 | 68.8482 | 76.0043 | | 0.7502 | 3.45 | 252 | 0.8404 | 70.9424 | 78.2197 | | 0.7502 | 3.94 | 288 | 0.9341 | 68.5864 | 75.3916 | | 0.6715 | 4.44 | 324 | 0.7647 | 74.2147 | 80.2681 | | 0.576 | 4.92 | 360 | 0.7881 | 75.6545 | 81.9120 | | 0.576 | 5.42 | 396 | 0.8022 | 74.7382 | 80.7782 | | 0.5213 | 5.91 | 432 | 0.8218 | 74.2147 | 80.6803 | | 0.4811 | 6.41 | 468 | 0.8236 | 75.9162 | 81.7215 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.2.0 - Tokenizers 0.13.2