File size: 28,177 Bytes
a2d6347 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 |
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content=" PromptWizard:Task-Aware Prompt Optimization Framework">
<meta name="keywords" content="PromptWizard">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>PromptWizard</title>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-PYVRSFMDRL"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-PYVRSFMDRL');
</script>
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="icon" href="./static/images/favicon.svg">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
<style>
.red-text {
color: red;
}
/* Collapsible content - initially hidden */
.col_content_1 {
padding: 15px;
background-color: #f1f1f1;
display: none;
}
.col_content_2 {
padding: 15px;
background-color: #f1f1f1;
display: none;
}
.col_content_3 {
padding: 15px;
background-color: #f1f1f1;
display: none;
}
.col_content_4 {
padding: 15px;
background-color: #f1f1f1;
display: none;
}
.col_content_5 {
padding: 15px;
background-color: #f1f1f1;
display: none;
}
.col_content_6 {
padding: 15px;
background-color: #f1f1f1;
display: none;
}
.col_content_7 {
padding: 15px;
background-color: #f1f1f1;
display: none;
}
.col_content_8 {
padding: 15px;
background-color: #f1f1f1;
display: none;
}
.col_content_9 {
padding: 15px;
background-color: #f1f1f1;
display: none;
}
.col_content_10 {
padding: 15px;
background-color: #f1f1f1;
display: none;
}
.col_content_11 {
padding: 15px;
background-color: #f1f1f1;
display: none;
}
table {
width: 100%;
border-collapse: collapse;
}
table, th, td {
border: 1px solid black;
}
th, td {
padding: 8px;
text-align: left;
}
.btn {
display: flex; /* Use flexbox for layout */
justify-content: space-between; /* Space out content on left and right */
align-items: center; /* Center content vertically */
padding: 10px 20px; /* Add padding to the button */
font-size: 18px; /* Text size */
background-color: black;
color: white;
border: none;
border-radius: 5px;
cursor: pointer;
width: 100%; /* Button width (you can adjust this) */
}
/* Style for the + sign */
.btn .icon {
font-size: 24px; /* Size of the + sign */
}
.btn:hover {
background-color: gray; /* Hover effect */
}
/* Container for the slider */
.slider-container {
width: 80%; /* Set the width of the slider */
margin: 0 auto;
overflow: hidden;
position: relative;
}
/* Slide wrapper that holds all the images */
.slider-wrapper {
display: flex;
transition: transform 0.5s ease-in-out;
}
/* Each image box (b5 box) */
.box {
flex: 0 0 100%; /* Each image takes full width of the container */
display: flex;
justify-content: center;
align-items: center;
}
.box img {
width: 90%; /* Make images responsive to fit the container */
max-height: 400px; /* Control max height */
object-fit: cover; /* Ensure images maintain aspect ratio */
}
/* Navigation buttons (next and previous) */
.prev, .next {
position: absolute;
top: 50%;
transform: translateY(-50%);
background-color: rgba(0, 0, 0, 0.5);
color: white;
border: none;
padding: 10px;
cursor: pointer;
}
.prev {
left: 10px;
}
.next {
right: 10px;
}
* {box-sizing: border-box;}
body {font-family: Verdana, sans-serif;}
.mySlides {display: none;}
img {vertical-align: middle;}
/* Slideshow container */
.slideshow-container {
max-width: 1000px;
position: relative;
margin: auto;
}
/* Caption text */
.text {
color: #f2f2f2;
font-size: 15px;
padding: 8px 12px;
position: absolute;
bottom: 8px;
width: 100%;
text-align: center;
}
/* Number text (1/3 etc) */
.numbertext {
color: #f2f2f2;
font-size: 12px;
padding: 8px 12px;
position: absolute;
top: 0;
}
/* The dots/bullets/indicators */
.dot {
height: 15px;
width: 15px;
margin: 0 2px;
background-color: #bbb;
border-radius: 50%;
display: inline-block;
transition: background-color 0.6s ease;
}
.active {
background-color: #717171;
}
/* Fading animation */
.fade {
animation-name: fade;
animation-duration: 1.5s;
}
@keyframes fade {
from {opacity: .4}
to {opacity: 1}
}
/* On smaller screens, decrease text size */
@media only screen and (max-width: 300px) {
.text {font-size: 11px}
}
</style>
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">🧙 PromptWizard<br><p style="white-space: nowrap;">Task-Aware Prompt Optimization Framework</p></h1>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a>Eshaan Agarwal</a>,</span>
<span class="author-block">
<a>Joykirat Singh</a>,</span>
<span class="author-block">
<a>Vivek Dani</a>,
</span>
<span class="author-block">
<a>Raghav Magazine</a>,
</span>
<span class="author-block">
<a>Tanuja Ganu</a>,
</span>
<span class="author-block">
<a>Akshay Nambi</a>
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block">Microsoft Research</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<span class="link-block">
<a href="https://arxiv.org/pdf/2405.18369"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<span class="link-block">
<a href="https://arxiv.org/abs/2405.18369"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
<!-- Code Link. -->
<span class="link-block">
<a href="https://github.com/microsoft/PromptWizard"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<div class="slideshow-container">
<div class="mySlides fade">
<div class="numbertext">1 / 3</div>
<p align="center">
<img src="images/overview.png">
</p>
</div>
<div class="mySlides fade">
<div class="numbertext">2 / 3</div>
<p align="center">
<img width="700" height="700" src="images/iterative_flowchart-1.png">
</p>
</div>
<div class="mySlides fade">
<div class="numbertext">3 / 3</div>
<p align="center">
<img width="700" height="700" src="images/sequential_flowchart-1.png">
</p>
</p>
</div>
</div>
<br>
<div style="text-align:center">
<span class="dot"></span>
<span class="dot"></span>
<span class="dot"></span>
</div>
<script>
let slideIndex = 0;
showSlides();
function showSlides() {
let i;
let slides = document.getElementsByClassName("mySlides");
let dots = document.getElementsByClassName("dot");
for (i = 0; i < slides.length; i++) {
slides[i].style.display = "none";
}
slideIndex++;
if (slideIndex > slides.length) {slideIndex = 1}
for (i = 0; i < dots.length; i++) {
dots[i].className = dots[i].className.replace(" active", "");
}
slides[slideIndex-1].style.display = "block";
dots[slideIndex-1].className += " active";
setTimeout(showSlides, 2000); // Change image every 2 seconds
}
</script>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<div class="content has-text-justified">
<b>PromptWizard</b> is an open source framework for automated prompt and example optimization, leveraging a feedback-driven critique and synthesis process to balance exploration and exploitation. It consistently outperforms state-of-the-art methods while significantly reducing computational costs, enabling efficient and scalable prompt engineering across diverse tasks and LLMs.
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Overview</h2>
<div class="content has-text-justified">
Large language models (LLMs) like GPT-4 have achieved remarkable performance across diverse tasks. At the core of this success is prompting—the process of providing input instructions to guide models toward desired outputs. Studies have shown that prompting significantly influences LLM performance, making prompt engineering—the design and refinement of prompts—critical for maximizing accuracy. However, crafting effective prompts remains a labor-intensive and domain-specific task, requiring human expertise and subjective judgment. As models evolve and tasks vary, the need to repeatedly design prompts raises an important question: <br> <b>Can prompt engineering be automated to streamline this process and enhance scalability? </b>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Motivation. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Motivation</h2>
<div class="content has-text-justified">
<h3>Prompting is central to LLMs!</h3>
<ul>
<li><b>Prompting</b>: The process of providing input instructions to guide models towards desired output</li>
<li><b>Prompt Engineering</b>: The process of designing and refining of prompts</li>
<li>Crating effective prompts is a challenge as:</li>
<ol>
<li>The task is labor-intensive</li>
<li>Prompts need to be domain-specific to work effectively</li>
<li>Often it equires human expertise and is subjective</li>
<li>Also as models and tasks evolve, there is a need for repeated design</li>
</ol>
</ul>
</div>
</div>
</div>
<!--/ Motivation. -->
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">PromptWizard Working </h2>
<div class="content has-text-justified">
<p>
PromptWizard (PW) is a discrete prompt optimization framework that employs a self-evolving mechanism where the LLM generates, critiques, and refines its own prompts and examples, continuously improving through iterative feedback and synthesis. This self-adaptive approach ensures holistic optimization by evolving both the instructions and in-context learning examples for better task performance.
</p>
<h3>Three Key Insights :</h3>
<p>
<ol>
<li><b>Feedback-driven Refinement</b>: LLM generates, critiques, and refines its own prompts and examples, continuously improving through iterative feedback and synthesis
</li>
<li><b>Critique and Synthesize diverse examples</b>: Generates synthetic examples that are robust, diverse and task-aware. Also it optimizes both prompt and examples in tandem
</li>
<li><b>Self generated Chain of Thought (CoT)</b> steps with combination of positive, negative and synthetic examples</li>
</ol>
<p>
Following are the details of each step :
</p>
<button class="btn" onclick="toggleContent(this,'1')">1. Feedback driven Refinement <span class="icon">+</span></button>
<div class="col_content_1">
<ul>
<li>Prompt wizard uses a systematic, feedback-driven proces where it incorporates a critique component that provides feedback, thus guiding and refining the prompt over multiple iterations</li>
<li>The following steps help in carrying out this systematically</li>
<ul>
<li><b>Mutate</b>: Takes an initial problem description + thinking Styles to generate prompts</li>
<li><b>Scoring</b>: Evaluate the performance of the generated prompts to determine best prompt</li>
<li><b>Critique</b>: Reviews where the prompt succeeded and failed by analyzing cases where the LLM struggled</li>
<li><b>Synthesize</b>: Uses critique’s feedback to refine the best prompt</li>
</ul>
</li>
</ul>
</div>
<script>
// Function to toggle the visibility of the collapsible content
function toggleContent(button,index) {
var content = document.querySelector(".col_content_"+index);
const icon = button.querySelector('.icon');
if (content.style.display === "block") {
content.style.display = "none"; // Hide content if it's visible
icon.textContent = icon.textContent.replace('-', '+');
} else {
content.style.display = "block"; // Show content if it's hidden
icon.textContent = icon.textContent.replace('+', '-');
}
}
</script>
<br>
<button class="btn" onclick="toggleContent(this,'2')">2. Critique and Synthesize diverse examples <span class="icon">+</span></button>
<div class="col_content_2">
<ul>
<li>PromptWizard improves both prompt instructions and few-shot examples in tandem</li>
<li>It uses self-reflection to synthesize examples that are diverse and task-relevant </li>
<li>An iterative feedback loop is used that continuously refines both the prompt and few-shot examples</li>
<li>Few shot example optimization:</li>
<ul>
<li><b>Critique</b>: Analyzes previously selected examples and use the feedback to determine how examples should evolve</li>
<li><b>Synthesize</b>: Incorporates feedback to generate new synthetic examples that are more diverse, robust, and task-relevant</li>
</ul>
<li>Prompt instruction optimization:</li>
<ul>
<li><b>Critique</b>: Identifies weaknesses and gaps that require addressing to further refine the prompt instruction</li>
<li><b>Synthesize</b>: Leverages feedback from the critique to synthesize and refine the prompt instruction</li>
</ul>
</ul>
</div>
<br>
<button class="btn" onclick="toggleContent(this,'3')">3. Chain of Thought Reasoning <span class="icon">+</span></button>
<div class="col_content_3">
<p>
<ul>
<li>Incorporating chain-of-thought (CoT) reasoning improves problem-solving abilities of the model</li>
<li>CoT Reasoning takes the selected few-shot examples and generates a detailed reasoning chain for each example to facilitate problem-solving</li>
<li>An LLM to check the coherence and relevance of examples</li>
</ul>
</p>
</div>
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Results. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Results</h2>
<div class="content has-text-justified">
<button class="btn" onclick="toggleContent(this,'4')">Instruction Induction Dataset<span class="icon">+</span></button>
<div class="col_content_4">
<p align="center">
<img src="./images/comaprision.png" >
</p>
<p align="center"><b>PromptWizard outperforms the baselines, achieving the highest accuracy on <b class="red-text">13/19 tasks (68%)</b> with 0-shot and <b class="red-text">16/19 (84%)</b> with 1-shot</b></p>
<p align="center">
<img src="./images/ppc.png" >
</p>
<p align="center"><b>PromptWizard consistently performs near the best possible accuracy across all tasks</b></p>
<p align="center">
<img src="./images/cost_analysis.png" >
</p>
<p align="center"><b>PromptWizard costs just $0.05 per task, <b class="red-text">5-60x reduction</b> in overall tokens/cost</b></p>
</div>
</div>
<button class="btn" onclick="toggleContent(this,'5')">Arithmetic Tasks<span class="icon">+</span></button>
<div class="col_content_5">
<p align="center">
<img src="./images/arithmetic_task.png" >
</p>
</div>
<br>
<button class="btn" onclick="toggleContent(this,'7')">Big Bench Hard<span class="icon">+</span></button>
<div class="col_content_7">
<p align="center">
<img src="./images/bigbench.png" >
</p>
</div>
<br>
<button class="btn" onclick="toggleContent(this,'8')">Prompts Using SLMs<span class="icon">+</span></button>
<div class="col_content_8">
<p align="center">
<img src="./images/slm_prompt.png" >
</p>
<p align="center"><b>PromptWizard using Llama-70B show a negligible <b b class="red-text">< 1% drop</b> in accuracy</b> </p>
</div>
<br>
<button class="btn" onclick="toggleContent(this,'9')">Varying the In-Context Examples<span class="icon">+</span></button>
<div class="col_content_9">
<p align="center">
<img src="./images/icl_results.png" >
</p>
<p align="center"><b>PromptWizard shows strong resilience even with fewer training samples mainly due to synthetic example generation and reasoning chains</b></p>
</div>
<br>
<button class="btn" onclick="toggleContent(this,'10')">Comparision with naive prompting<span class="icon">+</span></button>
<div class="col_content_10">
<p align="center">
<img src="./images/prompting.png" >
</p>
<p align="center"><b>Substantial performance improvements across all models when optimized prompts are generated by PromptWizard on GSM8k dataset</b></p>
</div>
<br>
<button class="btn" onclick="toggleContent(this,'11')">Comparision with Feedback based and other Prompt Optimization Techniques<span class="icon">+</span></button>
<div class="col_content_11">
<p align="center">
<table>
<tr>
<td>Dataset</td>
<td colspan="4">Accuracy (high)</td>
</tr>
<tr>
<td></td>
<td>DSPy</td>
<td>PromptAgent </td>
<td>APO</td>
<td>PW</td>
</tr>
<tr>
<td>GSM8k</td>
<td>78.2</td>
<td>68.84</td>
<td>25.67</td>
<td><b>90</b></td>
</tr>
<tr>
<td>AQUARAT</td>
<td>55.1</td>
<td>56.67</td>
<td>20.12</td>
<td><b>58.2</b></td>
</tr>
<tr>
<td>SVAMP</td>
<td>77</td>
<td>78.67</td>
<td>75.25</td>
<td><b>82.3</b></td>
</tr>
<tr>
<td>ETHOS</td>
<td>84.1</td>
<td>84.25</td>
<td>80.62</td>
<td><b>89.4</b></td>
</tr>
</table>
<br>
<table>
<tr>
<td>Dataset</td>
<td colspan="4">Calls (low)</td>
</tr>
<tr>
<td></td>
<td>DSPy</td>
<td>PromptAgent </td>
<td>APO</td>
<td>PW</td>
</tr>
<tr>
<td>GSM8k</td>
<td>915</td>
<td>2115</td>
<td>8490</td>
<td><b>147</b></td>
</tr>
<tr>
<td>AQUARAT</td>
<td>920</td>
<td>2200</td>
<td>8500</td>
<td><b>112</b></td>
</tr>
<tr>
<td>SVAMP</td>
<td>2300</td>
<td>2111</td>
<td>8000</td>
<td><b>178</b></td>
</tr>
<tr>
<td>ETHOS</td>
<td>660</td>
<td>2217</td>
<td>8200</td>
<td><b>80</b></td>
</tr>
</table>
<br>
<table>
<tr>
<td>Dataset</td>
<td colspan="4">Tokens (low)</td>
</tr>
<tr>
<td></td>
<td>DSPy</td>
<td>PromptAgent </td>
<td>APO</td>
<td>PW</td>
</tr>
<tr>
<td>GSM8k</td>
<td>262</td>
<td>500</td>
<td><b>109</b></td>
<td>237</td>
</tr>
<tr>
<td>AQUARAT</td>
<td>326</td>
<td>875</td>
<td><b>125</b></td>
<td>200</td>
</tr>
<tr>
<td>SVAMP</td>
<td>189</td>
<td>680</td>
<td><b>85</b></td>
<td>127</td>
</tr>
<tr>
<td>ETHOS</td>
<td>175</td>
<td>417</td>
<td><b>55</b></td>
<td>190</td>
</tr>
</table>
</p>
<br>
<p align="center"> <b>PromptWizard outperforms feedback based methods like APO, PromptAgent and other prompt optimization techniques like DSPy in terms of accuracy and number of API calls for optimization on various datasets.
</p>
</b>
</div>
</div>
</div>
</div>
<!--/ Results. -->
</section>
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@misc{agarwal2024promptwizardtaskawarepromptoptimization,
title={PromptWizard: Task-Aware Prompt Optimization Framework},
author={Eshaan Agarwal and Joykirat Singh and Vivek Dani and Raghav Magazine and Tanuja Ganu and Akshay Nambi},
year={2024},
eprint={2405.18369},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2405.18369},
}</code></pre>
</div>
</section>
<footer class="footer">
<div class="container">
<div class="content has-text-centered">
</div>
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This website is licensed under a <a rel="license"
href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
<p>
This means you are free to borrow the <a
href="https://github.com/nerfies/nerfies.github.io">source code</a> of this website,
we just ask that you link back to this page in the footer.
Please remember to remove the analytics code included in the header of the website which
you do not want on your website.
</p>
</div>
</div>
</div>
</div>
</footer>
</body>
</html>
|