Ali Safaya
commited on
Commit
·
98030fb
1
Parent(s):
9e93be3
initial commit
Browse files- README.md +91 -3
- config.json +29 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- spiece.model +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
README.md
CHANGED
@@ -1,3 +1,91 @@
|
|
1 |
-
---
|
2 |
-
license:
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- mlsum
|
7 |
+
metrics:
|
8 |
+
- rouge
|
9 |
+
model-index:
|
10 |
+
- name: eval-mt5-base-aggressive
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Summarization
|
14 |
+
type: summarization
|
15 |
+
dataset:
|
16 |
+
name: mlsum tu
|
17 |
+
type: mlsum
|
18 |
+
args: tu
|
19 |
+
metrics:
|
20 |
+
- name: Rouge1
|
21 |
+
type: rouge
|
22 |
+
value: 47.4222
|
23 |
+
---
|
24 |
+
|
25 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
26 |
+
should probably proofread and complete it, then remove this comment. -->
|
27 |
+
|
28 |
+
# eval-mt5-base-aggressive
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the mlsum tu dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 2.7801
|
33 |
+
- Rouge1: 47.4222
|
34 |
+
- Rouge2: 34.8624
|
35 |
+
- Rougel: 42.2487
|
36 |
+
- Rougelsum: 43.9494
|
37 |
+
- Gen Len: 51.3525
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 0.0005
|
57 |
+
- train_batch_size: 2
|
58 |
+
- eval_batch_size: 4
|
59 |
+
- seed: 42
|
60 |
+
- distributed_type: multi-GPU
|
61 |
+
- num_devices: 8
|
62 |
+
- gradient_accumulation_steps: 4
|
63 |
+
- total_train_batch_size: 64
|
64 |
+
- total_eval_batch_size: 32
|
65 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
66 |
+
- lr_scheduler_type: linear
|
67 |
+
- num_epochs: 10.0
|
68 |
+
- label_smoothing_factor: 0.1
|
69 |
+
|
70 |
+
### Training results
|
71 |
+
|
72 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
73 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
74 |
+
| 3.084 | 1.0 | 3895 | 2.9282 | 31.6872 | 22.1113 | 29.2851 | 29.7608 | 18.9861 |
|
75 |
+
| 2.9162 | 2.0 | 7790 | 2.8552 | 32.1716 | 22.5001 | 29.6845 | 30.1887 | 18.9938 |
|
76 |
+
| 2.8149 | 3.0 | 11685 | 2.8089 | 32.5681 | 22.689 | 30.0409 | 30.5507 | 18.9959 |
|
77 |
+
| 2.7325 | 4.0 | 15580 | 2.7948 | 33.1236 | 23.1775 | 30.5156 | 31.0461 | 18.9958 |
|
78 |
+
| 2.6679 | 5.0 | 19475 | 2.7810 | 33.1766 | 23.162 | 30.4802 | 31.0527 | 18.9967 |
|
79 |
+
| 2.6237 | 6.0 | 23370 | 2.7790 | 33.1118 | 23.2043 | 30.5064 | 31.0096 | 18.9978 |
|
80 |
+
| 2.5711 | 7.0 | 27265 | 2.7801 | 33.2033 | 23.2957 | 30.59 | 31.1504 | 18.9979 |
|
81 |
+
| 2.538 | 8.0 | 31160 | 2.7777 | 33.0256 | 23.0621 | 30.3818 | 30.978 | 18.998 |
|
82 |
+
| 2.5 | 9.0 | 35055 | 2.7839 | 33.2288 | 23.2361 | 30.5421 | 31.1573 | 18.998 |
|
83 |
+
| 2.4719 | 10.0 | 38950 | 2.7832 | 33.2098 | 23.2274 | 30.5164 | 31.1094 | 18.9981 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.11.3
|
89 |
+
- Pytorch 1.8.2+cu111
|
90 |
+
- Datasets 1.14.0
|
91 |
+
- Tokenizers 0.10.3
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google/mt5-base",
|
3 |
+
"architectures": [
|
4 |
+
"MT5ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"d_ff": 2048,
|
7 |
+
"d_kv": 64,
|
8 |
+
"d_model": 768,
|
9 |
+
"decoder_start_token_id": 0,
|
10 |
+
"dropout_rate": 0.1,
|
11 |
+
"eos_token_id": 1,
|
12 |
+
"feed_forward_proj": "gated-gelu",
|
13 |
+
"initializer_factor": 1.0,
|
14 |
+
"is_encoder_decoder": true,
|
15 |
+
"layer_norm_epsilon": 1e-06,
|
16 |
+
"model_type": "mt5",
|
17 |
+
"num_decoder_layers": 12,
|
18 |
+
"num_heads": 12,
|
19 |
+
"num_layers": 12,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 0,
|
22 |
+
"relative_attention_num_buckets": 32,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"tokenizer_class": "T5Tokenizer",
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.11.3",
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 250100
|
29 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18b608a7836e1e81f15b72d9bbd255919547dbb21b035c9cf0abcad95e4fc8f2
|
3 |
+
size 2329633625
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef78f86560d809067d12bac6c09f19a462cb3af3f54d2b8acbba26e1433125d6
|
3 |
+
size 4309802
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "extra_ids": 0, "additional_special_tokens": null, "special_tokens_map_file": "/home/patrick/.cache/torch/transformers/685ac0ca8568ec593a48b61b0a3c272beee9bc194a3c7241d15dcadb5f875e53.f76030f3ec1b96a8199b2593390c610e76ca8028ef3d24680000619ffb646276", "name_or_path": "google/mt5-base", "sp_model_kwargs": {}, "tokenizer_class": "T5Tokenizer"}
|