File size: 2,395 Bytes
994e46a 40f663f 6a63c98 73fa0da 6a63c98 73fa0da 6a63c98 994e46a fcf7a9c 715e74d 994e46a e81c441 994e46a b70e3a2 fcf7a9c 994e46a fcf7a9c 994e46a fcf7a9c 6a63c98 994e46a b70e3a2 994e46a fcf7a9c 994e46a fcf7a9c 994e46a 6a63c98 b70e3a2 994e46a fcf7a9c 994e46a fcf7a9c 994e46a fcf7a9c 994e46a fcf7a9c 994e46a e81c441 994e46a fcf7a9c 994e46a 715e74d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
language:
- en
pipeline_tag: unconditional-image-generation
tags:
- Diffusion Models
- Stable Diffusion
- Perturbed-Attention Guidance
- PAG
---
# Perturbed-Attention Guidance for SDXL
<div style="display:flex">
<video width=50% autoplay loop>
<source src="https://huggingface.co/multimodalart/sdxl_perturbed_attention_guidance/resolve/main/pag_sdxl.mp4" type="video/mp4">
</video>
<video width=50% autoplay loop>
<source src="https://huggingface.co/multimodalart/sdxl_perturbed_attention_guidance/resolve/main/pag_uncond.mp4" type="video/mp4">
</video>
</div>
[Project](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) / [arXiv](https://arxiv.org/abs/2403.17377) / [GitHub](https://github.com/KU-CVLAB/Perturbed-Attention-Guidance)
This repository is based on [Diffusers](https://huggingface.co/docs/diffusers/index). The pipeline is a modification of StableDiffusionXLPipeline to add Perturbed-Attention Guidance (PAG).
The original Perturbed-Attention Guidance for unconditional models and SD1.5 by [Hyoungwon Cho](https://huggingface.co/hyoungwoncho) is availiable at [hyoungwoncho/sd_perturbed_attention_guidance](https://huggingface.co/hyoungwoncho/sd_perturbed_attention_guidance)
## Quickstart
Loading Custom Pipeline:
```py
from diffusers import StableDiffusionXLPipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance",
torch_dtype=torch.float16
)
device="cuda"
pipe = pipe.to(device)
```
Unconditional sampling with PAG:
![image/jpeg](uncond_generation_pag.jpg)
```py
output = pipe(
"",
num_inference_steps=50,
guidance_scale=0.0,
pag_scale=5.0,
pag_applied_layers=['mid']
).images
```
Sampling with PAG and CFG:
![image/jpeg](cfgpag.jpg)
```py
output = pipe(
"the spirit of a tamagotchi wandering in the city of Vienna",
num_inference_steps=25,
guidance_scale=4.0,
pag_scale=3.0,
pag_applied_layers=['mid']
).images
```
## Parameters
`guidance_scale` : gudiance scale of CFG (ex: `7.5`)
`pag_scale` : gudiance scale of PAG (ex: `4.0`)
`pag_applied_layers`: layer to apply perturbation (ex: ['mid'])
`pag_applied_layers_index` : index of the layers to apply perturbation (ex: ['m0', 'm1'])
## Stable Diffusion XL Demo
Soon |