File size: 6,540 Bytes
bbfa6f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import sys

import datasets
import torch
import re
import os
import subprocess
import numpy as np

from llava.datasets.builder import DATASETS

from typing import Dict, Optional, Sequence, List
from llava.datasets.data_cfgs import data_configs
from llava.datasets.base_dataset import FramesTaskDataset
from llava.datasets.data_cfgs import data_configs
from llava.utils import master_print
import pickle
from pathlib import Path
import random
from llava.datasets.prompts import tt_caption_prompt, internvid_prompt
from llava.constants import DEFAULT_VIDEO_TOKEN
from PIL import Image
import json
import numpy as np

class GPT4VInternalDataset(FramesTaskDataset):
    def __init__(self, anno_path=None, data_args=None, fps=0.5, conv_type='single', task_types=None, name='gpt4v_internal'):
        self.default_fps = 2.0
        self.fps = fps
        self.conv_type = conv_type
        self.task_types = task_types
        self.annotation = self.get_dataset(anno_path)
        assert self.conv_type in ('single', 'multi'), "gpt4v_public conv type must in single/multi"
        # assert hasattr(self.data_args, 'task_types') ,  "gpt4v_internal must have key 'task_types' in yaml config"
        # master_print(f"Finished loading dataset {name} {len(self.annotation)} samples...")
        super().__init__(anno_path=anno_path,
                         data_args=data_args,
                         fps=fps,
                         name=name)
    def __len__(self):
        return len(self.annotation)
        
    def get_dataset(self, anno_path):
        dataset = []
        anno_path = Path(anno_path)
        with anno_path.open('rb') as f:
            data = json.load(f)
        for info in data:   
            filtered_qa = []
            for qa in info['qa_pairs']:
                if len(qa['question']) == 0 or len(qa['answer']) == 0:
                    continue
                filtered_qa.append(qa)
            info['qa_pairs'] = filtered_qa
            
            for task_type in self.task_types:
                info_task = info.copy()
                if len(info_task[task_type]) == 0:
                    continue
                if task_type == 'qa_pairs' and self.conv_type == 'single':
                    for qa_pair in info_task[task_type]:
                        one_info = info_task.copy()
                        one_info[task_type] = [qa_pair]
                        one_info.update({
                            'task_type': task_type
                        })
                        dataset.append(one_info)
                else:
                    info_task.update({
                        'task_type': task_type
                    })
                    dataset.append(info_task)

        return dataset

    @staticmethod
    def _sample_frames(frames, num_segments):
        indices = np.linspace(start=0, stop=len(frames) - 1, num=num_segments).astype(int)

        frames = [frames[ind] for ind in indices]

        return frames


    def text_preprocess(self, item) -> List[Dict[str, str]]:
        all_convs = []
        # TODO: different prompt for summary and detail
        if item['task_type'] == 'summary':
             all_convs.append([
                {
                    'from': 'human',
                    'value': random.choice(internvid_prompt)
                },
                {
                    'from': 'model',
                    'value': item['summary']
                }
            ])           
        elif item['task_type'] == 'detail':
            all_convs.append([
                {
                    'from': 'human',
                    'value': random.choice(tt_caption_prompt)
                },
                {
                    'from': 'model',
                    'value': item['detail']
                }
            ])
        else:
            for qa in item['qa_pairs']:
                all_convs.append([
                    {
                        'from': 'human',
                        'value': qa['question']
                    },
                    {
                        'from': 'model',
                        'value': qa['answer']
                    }
                ])                
            
        conversations = []
        random.shuffle(all_convs)
        for idx, conv in enumerate(all_convs):
            if idx == 0:
                conv[0]['value'] = DEFAULT_VIDEO_TOKEN + conv[0]['value']
            conversations.extend(conv)

        return conversations


    def vis_preprocess(self, vis_path):
        image_files = [(os.path.splitext(img)[0], img) for img in os.listdir(vis_path) if not img.startswith('cuttime')]
        image_files = [(int(x[0]), x[1]) for x in image_files]
        image_files = sorted(image_files, key=lambda img: img[0])
        intervals = np.linspace(start=0, stop=len(image_files)-1, num=10).astype(int)
        image_files = [image_files[i] for i in intervals]

        if self.num_segments > 0 and len(image_files) > self.num_segments:
            image_files = self._sample_frames(image_files, self.num_segments)

        images = []
        for image_file in image_files:
            try:
                images.append(Image.open(os.path.join(vis_path, image_file[1])).convert('RGB'))
            except Exception as e:
                continue
        formatted_images = []
        for image in images:
            im = self.preprocess_image(image)
            if isinstance(im, list):
                formatted_images.extend(im)
            else:
                formatted_images.append(im)

        # images = [self.preprocess_image(image) for image in images]

        return formatted_images

    def __getitem__(self, i) -> Dict[str, torch.Tensor]:
        item = self.annotation[i]

        ret = {
            'images': self.vis_preprocess(item['vis_path']),
            'conversations': self.text_preprocess(item)
        }
        if 'id' in item:
            ret['id'] = item['id']

        return ret


@DATASETS.register_obj
def gpt4v_internal(data_args):
    data_cfg = data_configs['gpt4v_internal']
    train_data_path = None
    if 'train_data_path' in data_args.external_args:
        train_data_path = data_args.external_args['train_data_path']
    else:
        train_data_path = data_cfg['train_data_path']
    fps, conv_type, task_types = data_args.external_args['fps'], data_args.external_args['conv_type'], data_args.external_args['task_types']
    return GPT4VInternalDataset(train_data_path, data_args,  fps, conv_type, task_types)