File size: 12,086 Bytes
bbfa6f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from audioop import avg
from email.policy import default
import os
import re
import json
import sys
import argparse

import openai
from abc import ABC, abstractmethod
# from pattern3.en import singularize
# from nltk.stem import WordNetLemmatizer
# from call_dino_service import 
from tqdm import tqdm
from functools import partial

# import spacy
import time
from collections import defaultdict
from copy import deepcopy
from pathlib import Path
from multiprocessing import Pool
from llava.eval.masp_eval.utils import GPTAPIWrapper 

# class RefineCHAIR():
#     def __init__(self):
#         self.system_prompt = "I am ChatGPT, a virtual assistant based on OpenAI's GPT-4 model. I'm designed to understand and generate human-like text based on the input I receive. My main purpose is to assist with information, answer questions, help with tasks that involve natural language processing, and engage in conversations with users.Please note that while I aim to provide accurate and reliable information, I can't guarantee perfection, and it's always a good idea to consult additional resources or professionals when making critical decisions based on the information I provide."
#         self.openai_obj = GPTAPIWrapper(ak="GjrgjjyJHUbLa15DLnr7t0Bhu6IPqFPj")
#         with open('llava/eval/masp_eval/video_chair/prompts/cap_mention.txt', 'r') as file:
#             content = file.read()
#         self.cap_user_prompt = content
system_prompt = "I am ChatGPT, a virtual assistant based on OpenAI's GPT-4 model. I'm designed to understand and generate human-like text based on the input I receive. My main purpose is to assist with information, answer questions, help with tasks that involve natural language processing, and engage in conversations with users.Please note that while I aim to provide accurate and reliable information, I can't guarantee perfection, and it's always a good idea to consult additional resources or professionals when making critical decisions based on the information I provide."

with open('llava/eval/masp_eval/video_chair/prompts/cap_mention.txt', 'r') as file:
    content = file.read()
cap_user_prompt = content

openai_obj = GPTAPIWrapper(ak="GjrgjjyJHUbLa15DLnr7t0Bhu6IPqFPj")


def _add(case_res, all_res):
    for key, value in case_res.items():
        for idx, count_ in enumerate(value):
            all_res[key][idx] += count_
    return
    
def save_metric(coverage, hallucination, case_len, output_dir=None):
    final_metrics = {}
    for name, res in [['coverage', coverage], ['hallucination', hallucination]]:
        combine_counter = [0, 0]    
        for cat, counter in res.items():
            final_metrics[name+'_'+cat] = round(counter[0] * 100/ counter[1], 2)
            combine_counter[0] += counter[0]
            combine_counter[1] += counter[1]
            if name == 'hallucination':
                final_metrics[name+'_'+cat] = round(100 - final_metrics[name+'_'+cat], 2)
            final_metrics[name] = round(combine_counter[0] * 100 / combine_counter[1], 2)
        if name == 'hallucination':
            final_metrics[name] = round(100 - final_metrics[name], 2)
    final_metrics['avg_len'] = round(sum(case_len) / len(case_len), 1)

    if output_dir is not None:
        with (output_dir / 'chair_metric_neg.json').open('w') as f:
            json.dump(final_metrics, f, indent=4)

    print(json.dumps(final_metrics, indent=1))

def combine_info(pred_info, gt_info):
    combined_info = defaultdict(dict)
    if 'object_id' in gt_info[0]:
        id_key = 'object_id'
    else:
        id_key = 'task_id'
    for gt in gt_info:
        object_id = gt[id_key]
        if gt['cap_info'] is None:
            continue
        combined_info[object_id]['gt_caption'] = gt['refine_caption']
        combined_info[object_id]['gt_info'] = gt['cap_info']

    for pred in pred_info:
        object_id = pred[id_key]
        if object_id not in combined_info:
            # print(pred)
            continue
        if pred['cap_info'] is None:
            continue
        combined_info[object_id]['pred_caption'] = pred['masp_inference']
        combined_info[object_id]['pred_info'] = pred['cap_info']
    filtered_ids = []
    for key, value in combined_info.items():
        if ('pred_info' not in value) or ('gt_info' not in value):
            filtered_ids.append(key)
    for obj_id in filtered_ids:
        del combined_info[obj_id]

    print(f'evaluation cases: {len(combined_info)}')
    
    return combined_info

def format_question(info):
    categories = ['subjects', 'activities', 'locations', 'text_overlays']
    question_id = 0
    question_mapping = {}
    questions = []
    for cat in categories:
        if cat == 'subjects':
            for c_id, character_content in enumerate(info['subjects']):
                questions.append(cat + ':' + character_content['name'])
                question_mapping[question_id] = (cat, c_id)
                question_id += 1
                if 'attributes' not in character_content:
                    continue
                for a_id, attr in enumerate(character_content['attributes']):
                    questions.append(character_content['name'] + ':' + attr)
                    question_mapping[question_id] = ('attributes', c_id, a_id)
                    question_id += 1
            
        else:
            for c_id, cat_attr in enumerate(info[cat]):
                questions.append(cat + ':' + cat_attr)
                question_mapping[question_id] = (cat, c_id)
                question_id += 1
                
    question_str = ''
    for idx, q in enumerate(questions):
        question_str += f'{idx+1}. {q}' + '\n'

    return question_str, question_mapping

def parsing_results(gpt_ret, question_mapping):
    gpt_ret = gpt_ret.lower()
    pattern = r'(\d+)\.(.+) - (yes|no|maybe),(.+)'

    # Find all matches in the text
    matches = re.findall(pattern, gpt_ret)
    collected_answer = defaultdict(lambda:[0,0])
    # Print the matches
    for match in matches:
        question_id, question, answer, reason = match
        question_id = int(question_id) - 1
        cat = question_mapping[question_id][0]
        collected_answer[cat][1] += 1
        if 'yes' in answer:
            collected_answer[cat][0] += 1
        elif 'no' in answer:
            pass
        elif 'maybe' in answer:
            collected_answer[cat][0] += 1
        else:
            NotImplementedError
    return collected_answer



def process_coverage(data):
    object_id = data[0]
    case_info = data[1]
    gt_info = case_info['gt_info']
    # if gt_info is None:
    #     return None
    try:
        question_str, question_mapping = format_question(gt_info)
    except Exception as e:
        print(e)
        return None
    user_prompt = deepcopy(cap_user_prompt)
    user_prompt = user_prompt.replace("/video caption/", case_info['pred_caption'])
    user_prompt = user_prompt.replace("/question/", question_str)
    gpt_ret, _ = openai_obj.get_completion(user_prompt=user_prompt, system_prompt=system_prompt)
    try:
        coverage_res = parsing_results(gpt_ret, question_mapping)
    except Exception as e:
        print(e)
        print(gpt_ret)
        return None    
    sentence_len = len(case_info['pred_caption'].split(' '))
    return (object_id, gpt_ret, dict(coverage_res), sentence_len)


def process_hallucination(data):
    object_id = data[0]
    case_info = data[1]
    pred_info = case_info['pred_info']
    # if pred_info is None:
    #     return None
    try:
        question_str, question_mapping = format_question(pred_info)
    except Exception as e:
        print(e)
        return None
    user_prompt = deepcopy(cap_user_prompt)
    user_prompt = user_prompt.replace("/video caption/", case_info['gt_caption'])
    user_prompt = user_prompt.replace("/question/", question_str)
    gpt_ret, _ = openai_obj.get_completion(user_prompt=user_prompt, system_prompt=system_prompt)
    try:
        hallucination_res = parsing_results(gpt_ret, question_mapping)
    except Exception as e:
        print(e)
        print(gpt_ret)
        return None        
    # self._add(hallucination_res, evaluator.hallucination_metric)
    # saved_combined_info[object_id]['hallucination_res'] = gpt_ret
    # print(gpt_ret)    
    return (object_id, gpt_ret, dict(hallucination_res))



def compute_refine_chair(pred_file, gt_file, coverage_file, hallucination_file):
    coverage_metric = defaultdict(lambda:[0,0])
    hallucination_metric = defaultdict(lambda:[0,0])
    case_len = []

    with open(pred_file, 'r', encoding='utf-8') as f:
        pred_info = json.load(f)
    with open(gt_file, 'r', encoding='utf-8') as f:
        gt_info = json.load(f)

    combined_info = combine_info(pred_info, gt_info)
    saved_combined_info = deepcopy(combined_info) 
    combine_info_lst = list(combined_info.items())

    pool = Pool(processes=32)
    print('calculate coverage')
    dict_res_coverage = {}   
    for res in tqdm(pool.imap_unordered(process_coverage, combine_info_lst), total=len(combine_info_lst)):
        if res is None:
            continue
        object_id, gpt_ret, coverage_res, sentence_len = res
        _add(coverage_res, coverage_metric)
        case_len.append(sentence_len)
        saved_combined_info[object_id]['coverage_res'] = gpt_ret
        dict_res_coverage[str(object_id)] = coverage_res

    print('calculate hallucination')
    dict_res_hallucination = {}
    for res in tqdm(pool.imap_unordered(process_hallucination, combine_info_lst), total=len(combine_info_lst)):
        if res is None:
            continue
        object_id, gpt_ret, hallucination_res = res
        _add(hallucination_res, hallucination_metric)
        saved_combined_info[object_id]['hallucination_res'] = gpt_ret
        dict_res_hallucination[str(object_id)] = hallucination_res

    pool.close()
    pool.join()

    output_dir = Path(pred_file).parent

    with (output_dir / coverage_file).open('w') as f:
        json.dump(dict_res_coverage, f, indent=4)
    print(f"Saving coverage result for each video in {output_dir}")

    with (output_dir / hallucination_file).open('w') as f:
        json.dump(dict_res_hallucination, f, indent=4) 
    print(f"Saving hallucination result for each video in {output_dir}")

    save_metric(coverage_metric, hallucination_metric, case_len, output_dir)
    with (output_dir / 'chair_metric_detailed.json').open('w') as f:
        json.dump(saved_combined_info, f, indent=4)     

    
def print_metrics(hallucination_cap_dict, quiet=False):
    sentence_metrics = hallucination_cap_dict['overall_metrics']
    metric_string = "%0.01f\t%0.01f" %(sentence_metrics['CHAIRs']*100, 
                                       sentence_metrics['CHAIRi']*100)
    if not quiet:
        print("CHAIRs\tCHAIRi")
        print(metric_string)
        print(sentence_metrics['sentence len'])
        print(sentence_metrics['avg objects'])
    else:
        return metric_string
    
# python3 chair/chair_gpt.py --cap_file /mnt/bd/bohanzhaiv1/LLM/bohan/POPE/caption_data/vg_instruction1_llava.json  --annotation_path /mnt/bn/algo-masp-nas-2/masp_data/coco_2014/annotations
if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument("--pred_file", type=str, default='/mnt/bn/yukunfeng-nasdrive/xiangchen/model/masp_models/checkpoints/mistral-ablation-v077-ocr/video_chair/vid_top1k_neg_res_non_dup_info.json')
    parser.add_argument("--gt_file", type=str, default='/mnt/bn/yukunfeng-nasdrive/xiangchen/repo/benchmark_data/refine_chair_eval_gt_neg_1k.json')
    parser.add_argument("--coverage_filename", type=str, default='each_video_coverage_detail.json')
    parser.add_argument("--hallucination_filename", type=str, default='each_video_halluciantion_detail.json')
    
    # parser.add_argument("--gt_file", type=str, default='/mnt/bn/yukunfeng-nasdrive/xiangchen/repo/benchmark_data/refine_chair_eval_gt.json')
    args = parser.parse_args()

    compute_refine_chair(args.pred_file, args.gt_file, args.coverage_filename, args.hallucination_filename)