File size: 12,086 Bytes
bbfa6f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
from audioop import avg
from email.policy import default
import os
import re
import json
import sys
import argparse
import openai
from abc import ABC, abstractmethod
# from pattern3.en import singularize
# from nltk.stem import WordNetLemmatizer
# from call_dino_service import
from tqdm import tqdm
from functools import partial
# import spacy
import time
from collections import defaultdict
from copy import deepcopy
from pathlib import Path
from multiprocessing import Pool
from llava.eval.masp_eval.utils import GPTAPIWrapper
# class RefineCHAIR():
# def __init__(self):
# self.system_prompt = "I am ChatGPT, a virtual assistant based on OpenAI's GPT-4 model. I'm designed to understand and generate human-like text based on the input I receive. My main purpose is to assist with information, answer questions, help with tasks that involve natural language processing, and engage in conversations with users.Please note that while I aim to provide accurate and reliable information, I can't guarantee perfection, and it's always a good idea to consult additional resources or professionals when making critical decisions based on the information I provide."
# self.openai_obj = GPTAPIWrapper(ak="GjrgjjyJHUbLa15DLnr7t0Bhu6IPqFPj")
# with open('llava/eval/masp_eval/video_chair/prompts/cap_mention.txt', 'r') as file:
# content = file.read()
# self.cap_user_prompt = content
system_prompt = "I am ChatGPT, a virtual assistant based on OpenAI's GPT-4 model. I'm designed to understand and generate human-like text based on the input I receive. My main purpose is to assist with information, answer questions, help with tasks that involve natural language processing, and engage in conversations with users.Please note that while I aim to provide accurate and reliable information, I can't guarantee perfection, and it's always a good idea to consult additional resources or professionals when making critical decisions based on the information I provide."
with open('llava/eval/masp_eval/video_chair/prompts/cap_mention.txt', 'r') as file:
content = file.read()
cap_user_prompt = content
openai_obj = GPTAPIWrapper(ak="GjrgjjyJHUbLa15DLnr7t0Bhu6IPqFPj")
def _add(case_res, all_res):
for key, value in case_res.items():
for idx, count_ in enumerate(value):
all_res[key][idx] += count_
return
def save_metric(coverage, hallucination, case_len, output_dir=None):
final_metrics = {}
for name, res in [['coverage', coverage], ['hallucination', hallucination]]:
combine_counter = [0, 0]
for cat, counter in res.items():
final_metrics[name+'_'+cat] = round(counter[0] * 100/ counter[1], 2)
combine_counter[0] += counter[0]
combine_counter[1] += counter[1]
if name == 'hallucination':
final_metrics[name+'_'+cat] = round(100 - final_metrics[name+'_'+cat], 2)
final_metrics[name] = round(combine_counter[0] * 100 / combine_counter[1], 2)
if name == 'hallucination':
final_metrics[name] = round(100 - final_metrics[name], 2)
final_metrics['avg_len'] = round(sum(case_len) / len(case_len), 1)
if output_dir is not None:
with (output_dir / 'chair_metric_neg.json').open('w') as f:
json.dump(final_metrics, f, indent=4)
print(json.dumps(final_metrics, indent=1))
def combine_info(pred_info, gt_info):
combined_info = defaultdict(dict)
if 'object_id' in gt_info[0]:
id_key = 'object_id'
else:
id_key = 'task_id'
for gt in gt_info:
object_id = gt[id_key]
if gt['cap_info'] is None:
continue
combined_info[object_id]['gt_caption'] = gt['refine_caption']
combined_info[object_id]['gt_info'] = gt['cap_info']
for pred in pred_info:
object_id = pred[id_key]
if object_id not in combined_info:
# print(pred)
continue
if pred['cap_info'] is None:
continue
combined_info[object_id]['pred_caption'] = pred['masp_inference']
combined_info[object_id]['pred_info'] = pred['cap_info']
filtered_ids = []
for key, value in combined_info.items():
if ('pred_info' not in value) or ('gt_info' not in value):
filtered_ids.append(key)
for obj_id in filtered_ids:
del combined_info[obj_id]
print(f'evaluation cases: {len(combined_info)}')
return combined_info
def format_question(info):
categories = ['subjects', 'activities', 'locations', 'text_overlays']
question_id = 0
question_mapping = {}
questions = []
for cat in categories:
if cat == 'subjects':
for c_id, character_content in enumerate(info['subjects']):
questions.append(cat + ':' + character_content['name'])
question_mapping[question_id] = (cat, c_id)
question_id += 1
if 'attributes' not in character_content:
continue
for a_id, attr in enumerate(character_content['attributes']):
questions.append(character_content['name'] + ':' + attr)
question_mapping[question_id] = ('attributes', c_id, a_id)
question_id += 1
else:
for c_id, cat_attr in enumerate(info[cat]):
questions.append(cat + ':' + cat_attr)
question_mapping[question_id] = (cat, c_id)
question_id += 1
question_str = ''
for idx, q in enumerate(questions):
question_str += f'{idx+1}. {q}' + '\n'
return question_str, question_mapping
def parsing_results(gpt_ret, question_mapping):
gpt_ret = gpt_ret.lower()
pattern = r'(\d+)\.(.+) - (yes|no|maybe),(.+)'
# Find all matches in the text
matches = re.findall(pattern, gpt_ret)
collected_answer = defaultdict(lambda:[0,0])
# Print the matches
for match in matches:
question_id, question, answer, reason = match
question_id = int(question_id) - 1
cat = question_mapping[question_id][0]
collected_answer[cat][1] += 1
if 'yes' in answer:
collected_answer[cat][0] += 1
elif 'no' in answer:
pass
elif 'maybe' in answer:
collected_answer[cat][0] += 1
else:
NotImplementedError
return collected_answer
def process_coverage(data):
object_id = data[0]
case_info = data[1]
gt_info = case_info['gt_info']
# if gt_info is None:
# return None
try:
question_str, question_mapping = format_question(gt_info)
except Exception as e:
print(e)
return None
user_prompt = deepcopy(cap_user_prompt)
user_prompt = user_prompt.replace("/video caption/", case_info['pred_caption'])
user_prompt = user_prompt.replace("/question/", question_str)
gpt_ret, _ = openai_obj.get_completion(user_prompt=user_prompt, system_prompt=system_prompt)
try:
coverage_res = parsing_results(gpt_ret, question_mapping)
except Exception as e:
print(e)
print(gpt_ret)
return None
sentence_len = len(case_info['pred_caption'].split(' '))
return (object_id, gpt_ret, dict(coverage_res), sentence_len)
def process_hallucination(data):
object_id = data[0]
case_info = data[1]
pred_info = case_info['pred_info']
# if pred_info is None:
# return None
try:
question_str, question_mapping = format_question(pred_info)
except Exception as e:
print(e)
return None
user_prompt = deepcopy(cap_user_prompt)
user_prompt = user_prompt.replace("/video caption/", case_info['gt_caption'])
user_prompt = user_prompt.replace("/question/", question_str)
gpt_ret, _ = openai_obj.get_completion(user_prompt=user_prompt, system_prompt=system_prompt)
try:
hallucination_res = parsing_results(gpt_ret, question_mapping)
except Exception as e:
print(e)
print(gpt_ret)
return None
# self._add(hallucination_res, evaluator.hallucination_metric)
# saved_combined_info[object_id]['hallucination_res'] = gpt_ret
# print(gpt_ret)
return (object_id, gpt_ret, dict(hallucination_res))
def compute_refine_chair(pred_file, gt_file, coverage_file, hallucination_file):
coverage_metric = defaultdict(lambda:[0,0])
hallucination_metric = defaultdict(lambda:[0,0])
case_len = []
with open(pred_file, 'r', encoding='utf-8') as f:
pred_info = json.load(f)
with open(gt_file, 'r', encoding='utf-8') as f:
gt_info = json.load(f)
combined_info = combine_info(pred_info, gt_info)
saved_combined_info = deepcopy(combined_info)
combine_info_lst = list(combined_info.items())
pool = Pool(processes=32)
print('calculate coverage')
dict_res_coverage = {}
for res in tqdm(pool.imap_unordered(process_coverage, combine_info_lst), total=len(combine_info_lst)):
if res is None:
continue
object_id, gpt_ret, coverage_res, sentence_len = res
_add(coverage_res, coverage_metric)
case_len.append(sentence_len)
saved_combined_info[object_id]['coverage_res'] = gpt_ret
dict_res_coverage[str(object_id)] = coverage_res
print('calculate hallucination')
dict_res_hallucination = {}
for res in tqdm(pool.imap_unordered(process_hallucination, combine_info_lst), total=len(combine_info_lst)):
if res is None:
continue
object_id, gpt_ret, hallucination_res = res
_add(hallucination_res, hallucination_metric)
saved_combined_info[object_id]['hallucination_res'] = gpt_ret
dict_res_hallucination[str(object_id)] = hallucination_res
pool.close()
pool.join()
output_dir = Path(pred_file).parent
with (output_dir / coverage_file).open('w') as f:
json.dump(dict_res_coverage, f, indent=4)
print(f"Saving coverage result for each video in {output_dir}")
with (output_dir / hallucination_file).open('w') as f:
json.dump(dict_res_hallucination, f, indent=4)
print(f"Saving hallucination result for each video in {output_dir}")
save_metric(coverage_metric, hallucination_metric, case_len, output_dir)
with (output_dir / 'chair_metric_detailed.json').open('w') as f:
json.dump(saved_combined_info, f, indent=4)
def print_metrics(hallucination_cap_dict, quiet=False):
sentence_metrics = hallucination_cap_dict['overall_metrics']
metric_string = "%0.01f\t%0.01f" %(sentence_metrics['CHAIRs']*100,
sentence_metrics['CHAIRi']*100)
if not quiet:
print("CHAIRs\tCHAIRi")
print(metric_string)
print(sentence_metrics['sentence len'])
print(sentence_metrics['avg objects'])
else:
return metric_string
# python3 chair/chair_gpt.py --cap_file /mnt/bd/bohanzhaiv1/LLM/bohan/POPE/caption_data/vg_instruction1_llava.json --annotation_path /mnt/bn/algo-masp-nas-2/masp_data/coco_2014/annotations
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--pred_file", type=str, default='/mnt/bn/yukunfeng-nasdrive/xiangchen/model/masp_models/checkpoints/mistral-ablation-v077-ocr/video_chair/vid_top1k_neg_res_non_dup_info.json')
parser.add_argument("--gt_file", type=str, default='/mnt/bn/yukunfeng-nasdrive/xiangchen/repo/benchmark_data/refine_chair_eval_gt_neg_1k.json')
parser.add_argument("--coverage_filename", type=str, default='each_video_coverage_detail.json')
parser.add_argument("--hallucination_filename", type=str, default='each_video_halluciantion_detail.json')
# parser.add_argument("--gt_file", type=str, default='/mnt/bn/yukunfeng-nasdrive/xiangchen/repo/benchmark_data/refine_chair_eval_gt.json')
args = parser.parse_args()
compute_refine_chair(args.pred_file, args.gt_file, args.coverage_filename, args.hallucination_filename)
|