File size: 32,275 Bytes
bbfa6f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 |
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from email.mime import image
import os
from abc import ABC, abstractmethod
import torch
import torch.nn as nn
from .multimodal_encoder.builder import build_adapter_module, build_vision_tower, build_Qformer
from .multimodal_projector.builder import build_vision_projector
from llava.constants import IGNORE_INDEX, MM_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VIDEO_PATCH_TOKEN, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN
from llava.mm_utils import get_anyres_image_grid_shape
from llava.utils import master_print
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
import subprocess
import torch.onnx
class LlavaMetaModel:
def __init__(self, config):
super(LlavaMetaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(config, delay_load=True)
self.mm_projector = build_vision_projector(config)
if getattr(config, "qformer_model_path", None):
self.Qformer, self.ln_vision, self.query_tokens = build_Qformer(
config.num_query_token, self.vision_tower.hidden_size)
self.frame_position_encoding = nn.Embedding(
config.max_num_segments,
self.Qformer.config.hidden_size
)
if getattr(config, "adapter_module_name", None):
self.adapter_module = build_adapter_module(config, self.vision_tower.hidden_size)
if 'unpad' in getattr(config, 'mm_patch_merge_type', ''):
self.image_newline = nn.Parameter(
torch.empty(config.hidden_size, dtype=self.dtype)
)
# Prepare TRT
# self.trt_logger = trt.Logger(trt.Logger.WARNING)
# self.trt_runtime = trt.Runtime(self.trt_logger)
# trt.init_libnvinfer_plugins(None, "")
# nvidia_smi_output = subprocess.check_output(["nvidia-smi", "-L"]).decode()
# gpu_info = nvidia_smi_output.split(":")[1].split("(")[0].strip()
# print(gpu_info)
# if "A10" in gpu_info:
# vit_tagging_path = "./a10/vit.trt"
# elif "A30" in gpu_info:
# vit_tagging_path = "./a30/vit.trt"
# else:
# assert False,logging.info("just support in A10,A30")
# exit()
# with open(vit_tagging_path, 'rb') as f:
# engine_data_vit = f.read()
# self.vit_tag_trt_engine = self.trt_runtime.deserialize_cuda_engine(engine_data_vit)
# self.vit_tag_trt_context = self.vit_tag_trt_engine.create_execution_context()
# self.stream = cuda.Stream()
# TRT Implementation code stops at self.stream, proceed to the next part
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def get_adapter_module(self):
adapter_module = getattr(self, 'adapter_module', None)
if type(adapter_module) is list:
adapter_module = adapter_module[0]
return adapter_module
def get_qformer(self):
qformer = getattr(self, 'Qformer', None)
if type(qformer) is list:
qformer = qformer[0]
return qformer
def get_ln_vision(self):
ln_vision = getattr(self, 'ln_vision', None)
if type(ln_vision) is list:
ln_vision = ln_vision[0]
return ln_vision
def get_query_tokens(self):
query_tokens = getattr(self, 'query_tokens', None)
if type(query_tokens) is list:
query_tokens = query_tokens[0]
return query_tokens
def get_frame_position_encoding(self):
frame_position_encoding = getattr(self, 'frame_position_encoding', None)
if type(frame_position_encoding) is list:
frame_position_encoding = frame_position_encoding[0]
return frame_position_encoding
def initialize_vision_modules(self, model_args, fsdp=None):
vision_tower = model_args.vision_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
mm_patch_merge_type = model_args.mm_patch_merge_type
image_grid_pinpoints = model_args.image_grid_pinpoints
self.config.mm_vision_tower = vision_tower
self.config.img_size = model_args.img_size
self.config.drop_path_rate = model_args.drop_path_rate
self.config.vit_precision = model_args.vit_precision
self.config.vit_model_path = model_args.vit_model_path
self.config.num_query_token = model_args.num_query_token
self.config.qformer_model_path = model_args.qformer_model_path
self.config.adapter_module_name = model_args.adapter_module_name
self.config.adapter_module_path = model_args.adapter_module_path
self.config.max_num_segments = model_args.max_num_segments
self.config.pretrain_mm_mlp_adapter = pretrain_mm_mlp_adapter
# TODO: FSDP training is not ready
if self.get_vision_tower() is None:
vision_tower = build_vision_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
else:
self.vision_tower = vision_tower
else:
if fsdp is not None and len(fsdp) > 0:
vision_tower = self.vision_tower[0]
else:
vision_tower = self.vision_tower
vision_tower.load_model()
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = vision_tower.hidden_size
self.config.mm_vision_hidden_size = vision_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
self.config.mm_patch_merge_type = mm_patch_merge_type
self.config.image_grid_pinpoints = image_grid_pinpoints
if getattr(model_args, "qformer_model_path", None):
if self.get_qformer() is None:
self.Qformer, self.ln_vision, self.query_tokens = build_Qformer(
model_args.num_query_token, self.vision_tower.hidden_size)
self.frame_position_encoding = nn.Embedding(
model_args.max_num_segments,
self.Qformer.config.hidden_size
)
self.config.mm_hidden_size = self.Qformer.config.hidden_size
# self.Qformer = self.Qformer.to(torch.bfloat16)
if model_args.qformer_model_path != 'from_scratch':
self.load_pretrained_qformer(model_args.qformer_model_path)
if getattr(model_args, 'adapter_module_name', None):
if self.get_adapter_module() is None:
self.adapter_module = build_adapter_module(self.config, self.vision_tower.hidden_size)
self.adapter_module.load_model()
self.config.mm_hidden_size = self.adapter_module.output_dim
if getattr(self, 'mm_projector', None) is None:
self.mm_projector = build_vision_projector(self.config)
if 'unpad' in mm_patch_merge_type:
embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
self.image_newline = nn.Parameter(
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
def get_variable_frame_encoding_w(model_weights, load_weights):
model_len = model_weights.shape[0]
load_weights = {'.'.join(k.split('.')[1:]): v for k, v in load_weights.items()}
load_len = load_weights['frame_position_encoding.weight'].shape[0]
if model_len == load_len:
return get_w(load_weights, 'frame_position_encoding')
elif model_len < load_len:
value = load_weights['frame_position_encoding.weight'][:model_len]
return {'weight': value}
else:
value = model_weights.clone().cpu()
value[:load_len] = load_weights['frame_position_encoding.weight']
return {'weight': value}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
if self.get_frame_position_encoding():
self.frame_position_encoding.load_state_dict(get_variable_frame_encoding_w(self.frame_position_encoding.weight, mm_projector_weights))
master_print(f"Loaded pretrained parameters from {pretrain_mm_mlp_adapter}")
def load_pretrained_qformer(self, model_path):
if os.path.isfile(model_path):
checkpoint = torch.load(model_path, map_location="cpu")
else:
raise RuntimeError("checkpoint path is invalid")
if 'projector.bin' in model_path:
state_dict = {}
match_keys = ['Qformer', 'query_tokens']
for k, v in checkpoint.items():
flag = False
for match_key in match_keys:
if match_key in k:
flag = True
break
if flag:
state_dict[k.replace('model.', '')] = v
else:
state_dict = checkpoint["model"]
msg = self.load_state_dict(state_dict, strict=False)
master_print(f"Loaded Qformer from {model_path}")
# master_print(msg)
# return msg
def unpad_image(tensor, original_size):
"""
Unpads a PyTorch tensor of a padded and resized image.
Args:
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
original_size (tuple): The original size of the image (height, width).
Returns:
torch.Tensor: The unpadded image tensor.
"""
original_width, original_height = original_size
current_height, current_width = tensor.shape[1:]
original_aspect_ratio = original_width / original_height
current_aspect_ratio = current_width / current_height
if original_aspect_ratio > current_aspect_ratio:
scale_factor = current_width / original_width
new_height = int(original_height * scale_factor)
padding = (current_height - new_height) // 2
unpadded_tensor = tensor[:, padding:current_height - padding, :]
else:
scale_factor = current_height / original_height
new_width = int(original_width * scale_factor)
padding = (current_width - new_width) // 2
unpadded_tensor = tensor[:, :, padding:current_width - padding]
return unpadded_tensor
class LlavaMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def get_adapter_module(self):
return self.get_model().get_adapter_module()
def get_ln_vision(self):
return self.get_model().get_ln_vision()
def get_qformer(self):
return self.get_model().get_qformer()
def get_query_tokens(self):
return self.get_model().get_query_tokens()
def get_frame_position_encoding(self):
return self.get_model().get_frame_position_encoding()
def encode_images(self, images):
# Uncomment below to get normal output without tensorrt
image_features = self.get_vision_tower()(images)
#return image_features
#print(image_features.shape)
#print(images.shape)
#exit()
#print(images.shape)
#exit()
#-------------------- VIT CONVERSION START --------------------------
# import torch.onnx
# # Initialize the model, define the input, and export to ONNX
# model = self.get_model().get_vision_tower().half()
# device = next(model.parameters()).device
# # Move all buffers and constants to the correct device
# model.to(device)
# # Ensure all buffers are on the same device
# # for param in model.parameters():
# # param.data = param.data.to(device)
# for buffer in model.buffers():
# buffer.data = buffer.data.to(device)
# # Modify any control flow that uses tensors
# # For example, in the model's forward method, ensure that any tensor used in control flow is converted to int
# # Create a dummy input tensor with the same shape as the input tensor you will use in your application
# dummy_input = torch.randn(10, 3, 224, 224, device=device, dtype=next(model.parameters()).dtype).half()
# # Export the model
# onnx_path = "vit.onnx"
# torch.onnx.export(
# model,
# dummy_input,
# onnx_path,
# export_params=True,
# #opset_version=10,
# do_constant_folding=False, # Disable constant folding, need to do this in order to get onnx file.
# input_names=['input'],
# output_names=['output'],
# dynamic_axes={'input' : {0 : 'batch_size'}, 'output' : {0 : 'batch_size'}}
# )
# print(images.shape)
# exit()
#--------------------- VIT CONVERSION ENDS HERE ----------------------
# Get the device of the model's parameters
# device = torch.device('cuda:0')
# # Initialize the model, define the input, and export to ONNX
# model = self.get_model().get_vision_tower()
# model = model.to(device)
# # Create a dummy input tensor with the same shape as the input tensor you will use in your application
# dummy_input = torch.randn(10, 3, 224, 224).to(device)
# # Export the model
# onnx_path = "simple_model.onnx"
# torch.onnx.export(
# model,
# dummy_input,
# onnx_path,
# export_params=True,
# opset_version=10,
# do_constant_folding=True,
# input_names=['input'],
# output_names=['output'],
# dynamic_axes={'input' : {0 : 'batch_size'}, 'output' : {0 : 'batch_size'}})
# #print(images.shape)
# exit()
if self.get_qformer():
image_features = self.get_ln_vision()(image_features)
query_tokens = self.get_query_tokens()
query_tokens = query_tokens.expand(image_features.shape[0], -1, -1)
attn_mask = torch.ones(image_features.size()[:-1], dtype=torch.long).to(image_features.device)
dtype_ = self.get_vision_tower().dtype
# print(dtype_)
image_features = self.qformer_fusion(
query_tokens.to(dtype_),
image_features.to(dtype_),
attn_mask
).to(images.dtype)
# image_features = self.get_model().mm_projector(image_features)
return image_features
def qformer_fusion(self, query_tokens, features, attn_mask=None):
qformer = self.get_qformer()
query_output = qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=features,
encoder_attention_mask=attn_mask,
return_dict=True
)
return query_output.last_hidden_state
def prepare_inputs_labels_for_multimodal(
self, input_ids, position_ids, attention_mask, past_key_values, labels,
images, image_sizes=None
):
vision_tower = self.get_vision_tower()
if vision_tower is None or images is None or input_ids.shape[1] == 1:
return input_ids, position_ids, attention_mask, past_key_values, None, labels
# image: list(B) of tensor[1, 3, 336, 336]
# video: list(B) of tensor[N, 3, 336, 336]
# video_any_res: list(B) of tensor[N, P, 3, 336, 336]
if type(images) is list or images.ndim == 5:
if type(images) is list:
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
# video any res
if images[0].ndim == 5:
concat_images = torch.cat([image.flatten(0, 1) for image in images], dim=0)
split_sizes = [image.shape[0:2] for image in images]
else:
concat_images = torch.cat([image for image in images], dim=0)
split_sizes = [image.shape[0] for image in images]
image_features = self.encode_images(concat_images)
# add frame encoding then projector
if images[0].ndim == 5:
frame_ids = []
for split_size in split_sizes:
frame_ids.append(torch.tensor([idx for idx in range(split_size[0]) for _ in range(split_size[1])], \
dtype=torch.long, device=image_features.device))
else:
frame_ids = [torch.arange(split_size, dtype=torch.long, device=image_features.device)
for split_size in split_sizes]
frame_ids = torch.concat(frame_ids)
frame_position_encoding = self.get_frame_position_encoding()
if frame_position_encoding:
frame_embeddings = frame_position_encoding(frame_ids).unsqueeze(-2)
image_features += frame_embeddings
# TODO: add fusion model, rewrite this part in the future
adapter_module = self.get_adapter_module()
if adapter_module:
image_features = adapter_module(image_features, frame_ids)
image_features = self.get_model().mm_projector(image_features)
if images[0].ndim == 5:
split_sizes = [split_size[0] * split_size[1] for split_size in split_sizes]
image_features = torch.split(image_features, split_sizes, dim=0)
if adapter_module:
# image_features = [image_features[i].view(images[i].shape[0], images[i].shape[1], -1) for i in range(image_features.shape[0])]
image_features = [x.view(im.shape[0], -1, x.shape[2]) for x, im in zip(image_features, images)]
image_features = adapter_module.compress_token_per_img(image_features)
mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat')
image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square')
if mm_patch_merge_type == 'flat':
image_features = [x.flatten(0, 1) for x in image_features]
elif mm_patch_merge_type.startswith('spatial'):
new_image_features = []
for image_idx, image_feature in enumerate(image_features):
if image_feature.shape[0] > 1:
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
height = width = self.get_vision_tower().num_patches_per_side
assert height * width == base_image_feature.shape[0]
if image_aspect_ratio == 'anyres':
num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, self.get_vision_tower().config.image_size)
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
else:
raise NotImplementedError
if 'unpad' in mm_patch_merge_type:
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(image_feature, image_sizes[image_idx])
image_feature = torch.cat((
image_feature,
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
), dim=-1)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
else:
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
image_feature = image_feature.flatten(0, 3)
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
else:
image_feature = image_feature[0]
if 'unpad' in mm_patch_merge_type:
image_feature = torch.cat((
image_feature,
self.model.image_newline[None].to(image_feature.device)
), dim=0)
new_image_features.append(image_feature)
image_features = new_image_features
else:
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
else:
image_features = self.encode_images(images)
# if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_start_end', False):
# raise NotImplementedError
# TODO: Currently, all the embed_token will bu update when tune_mm_mlp_adapter = True && mm_use_start_end = True
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- FIXME
_input_ids = input_ids
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == MM_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == MM_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
if tokenizer_model_max_length is not None:
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
new_input_embeds_padded.append(torch.cat((
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
cur_new_embed
), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
else:
new_input_embeds_padded.append(torch.cat((
cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
def initialize_vision_tokenizer(self, model_args, tokenizer):
if model_args.mm_use_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_VIDEO_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
if 'gemma' in model_args.model_name_or_path:
# gemma use the same embedding for input and output
pass
else:
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if model_args.pretrain_mm_mlp_adapter:
# raise NotImplementedError
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
mm_projector_weights = {'.'.join(k.split('.')[1:]): v for k, v in mm_projector_weights.items()}
# embed_tokens_weight = mm_projector_weights['embed_tokens.weight']
# input_embeddings[:] = embed_tokens_weight
# if 'gemma' in model_args.model_name_or_path:
# output_embeddings[:] = embed_tokens_weight
assert num_new_tokens == 4
# if input_embeddings.shape == embed_tokens_weight.shape:
# input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
# elif embed_tokens_weight.shape[0] == num_new_tokens:
# input_embeddings[-num_new_tokens:] = embed_tokens_weight
# else:
# raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
elif model_args.mm_use_patch_token:
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
|