File size: 32,275 Bytes
bbfa6f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

from email.mime import image
import os
from abc import ABC, abstractmethod

import torch
import torch.nn as nn

from .multimodal_encoder.builder import build_adapter_module, build_vision_tower, build_Qformer
from .multimodal_projector.builder import build_vision_projector

from llava.constants import IGNORE_INDEX, MM_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VIDEO_PATCH_TOKEN, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN

from llava.mm_utils import get_anyres_image_grid_shape
from llava.utils import master_print
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
import subprocess
import torch.onnx

class LlavaMetaModel:

    def __init__(self, config):
        super(LlavaMetaModel, self).__init__(config)

        if hasattr(config, "mm_vision_tower"):
            self.vision_tower = build_vision_tower(config, delay_load=True)
            self.mm_projector = build_vision_projector(config)
            if getattr(config, "qformer_model_path", None):
                self.Qformer, self.ln_vision, self.query_tokens = build_Qformer(
                            config.num_query_token, self.vision_tower.hidden_size)
                self.frame_position_encoding = nn.Embedding(
                    config.max_num_segments,
                    self.Qformer.config.hidden_size
                )
            if getattr(config, "adapter_module_name", None):
                self.adapter_module = build_adapter_module(config, self.vision_tower.hidden_size)
            if 'unpad' in getattr(config, 'mm_patch_merge_type', ''):
                self.image_newline = nn.Parameter(
                    torch.empty(config.hidden_size, dtype=self.dtype)
                )

        # Prepare TRT
        # self.trt_logger = trt.Logger(trt.Logger.WARNING)
        # self.trt_runtime = trt.Runtime(self.trt_logger)
        # trt.init_libnvinfer_plugins(None, "")
        
        # nvidia_smi_output = subprocess.check_output(["nvidia-smi", "-L"]).decode()
        # gpu_info = nvidia_smi_output.split(":")[1].split("(")[0].strip()
        # print(gpu_info)
        # if "A10" in gpu_info:
        #     vit_tagging_path = "./a10/vit.trt"
        # elif "A30" in gpu_info:
        #     vit_tagging_path = "./a30/vit.trt"
        # else:
        #     assert False,logging.info("just support in A10,A30")
        #     exit()
        
        # with open(vit_tagging_path, 'rb') as f:
        #     engine_data_vit = f.read()
        # self.vit_tag_trt_engine = self.trt_runtime.deserialize_cuda_engine(engine_data_vit)
        # self.vit_tag_trt_context = self.vit_tag_trt_engine.create_execution_context()
        
        # self.stream =  cuda.Stream()

        # TRT Implementation code stops at self.stream, proceed to the next part

    def get_vision_tower(self):
        vision_tower = getattr(self, 'vision_tower', None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower
    
    def get_adapter_module(self):
        adapter_module = getattr(self, 'adapter_module', None)
        if type(adapter_module) is list:
            adapter_module = adapter_module[0]
        return adapter_module

    def get_qformer(self):
        qformer = getattr(self, 'Qformer', None)
        if type(qformer) is list:
            qformer = qformer[0]
        return qformer

    def get_ln_vision(self):
        ln_vision = getattr(self, 'ln_vision', None)
        if type(ln_vision) is list:
            ln_vision = ln_vision[0]
        return ln_vision
    
    def get_query_tokens(self):
        query_tokens = getattr(self, 'query_tokens', None)
        if type(query_tokens) is list:
            query_tokens = query_tokens[0]
        return query_tokens

    def get_frame_position_encoding(self):
        frame_position_encoding = getattr(self, 'frame_position_encoding', None)
        if type(frame_position_encoding) is list:
            frame_position_encoding = frame_position_encoding[0]
        return frame_position_encoding    

    def initialize_vision_modules(self, model_args, fsdp=None):
        vision_tower = model_args.vision_tower
        mm_vision_select_layer = model_args.mm_vision_select_layer
        mm_vision_select_feature = model_args.mm_vision_select_feature
        pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
        mm_patch_merge_type = model_args.mm_patch_merge_type
        image_grid_pinpoints = model_args.image_grid_pinpoints
        self.config.mm_vision_tower = vision_tower
        self.config.img_size = model_args.img_size
        self.config.drop_path_rate = model_args.drop_path_rate
        self.config.vit_precision = model_args.vit_precision
        self.config.vit_model_path = model_args.vit_model_path   
        self.config.num_query_token = model_args.num_query_token
        self.config.qformer_model_path = model_args.qformer_model_path
        self.config.adapter_module_name = model_args.adapter_module_name
        self.config.adapter_module_path = model_args.adapter_module_path
        self.config.max_num_segments = model_args.max_num_segments
        self.config.pretrain_mm_mlp_adapter = pretrain_mm_mlp_adapter
        # TODO: FSDP training is not ready
        if self.get_vision_tower() is None:
            vision_tower = build_vision_tower(model_args)

            if fsdp is not None and len(fsdp) > 0:
                self.vision_tower = [vision_tower]
            else:
                self.vision_tower = vision_tower
        else:
            if fsdp is not None and len(fsdp) > 0:
                vision_tower = self.vision_tower[0]
            else:
                vision_tower = self.vision_tower
            vision_tower.load_model()

        self.config.use_mm_proj = True
        self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
        self.config.mm_hidden_size = vision_tower.hidden_size
        self.config.mm_vision_hidden_size = vision_tower.hidden_size
        self.config.mm_vision_select_layer = mm_vision_select_layer
        self.config.mm_vision_select_feature = mm_vision_select_feature
        self.config.mm_patch_merge_type = mm_patch_merge_type
        self.config.image_grid_pinpoints = image_grid_pinpoints

        if getattr(model_args, "qformer_model_path", None):
            if self.get_qformer() is None:
                self.Qformer, self.ln_vision, self.query_tokens = build_Qformer(
                            model_args.num_query_token, self.vision_tower.hidden_size)
                self.frame_position_encoding = nn.Embedding(
                    model_args.max_num_segments,
                    self.Qformer.config.hidden_size
                )
                self.config.mm_hidden_size = self.Qformer.config.hidden_size
            # self.Qformer = self.Qformer.to(torch.bfloat16)
            if model_args.qformer_model_path != 'from_scratch':
                self.load_pretrained_qformer(model_args.qformer_model_path)
            
        if getattr(model_args, 'adapter_module_name', None):
            if self.get_adapter_module() is None:
                self.adapter_module = build_adapter_module(self.config, self.vision_tower.hidden_size)
                self.adapter_module.load_model()
            self.config.mm_hidden_size = self.adapter_module.output_dim

        if getattr(self, 'mm_projector', None) is None:

            self.mm_projector = build_vision_projector(self.config)

            if 'unpad' in mm_patch_merge_type:
                embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
                self.image_newline = nn.Parameter(
                    torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
                )
        else:
            # In case it is frozen by LoRA
            for p in self.mm_projector.parameters():
                p.requires_grad = True

        if pretrain_mm_mlp_adapter is not None:
            mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
            def get_w(weights, keyword):
                return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
            
            def get_variable_frame_encoding_w(model_weights, load_weights):
                model_len = model_weights.shape[0]
                load_weights = {'.'.join(k.split('.')[1:]): v for k, v in load_weights.items()}

                load_len = load_weights['frame_position_encoding.weight'].shape[0]
                if model_len == load_len:
                    return get_w(load_weights, 'frame_position_encoding')
                elif model_len < load_len:
                    value = load_weights['frame_position_encoding.weight'][:model_len]
                    return {'weight': value}
                else:
                    value = model_weights.clone().cpu()
                    value[:load_len] = load_weights['frame_position_encoding.weight']
                    return {'weight': value}
            
            self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
            if self.get_frame_position_encoding():
                self.frame_position_encoding.load_state_dict(get_variable_frame_encoding_w(self.frame_position_encoding.weight, mm_projector_weights))
            
            master_print(f"Loaded pretrained parameters from {pretrain_mm_mlp_adapter}")


    def load_pretrained_qformer(self, model_path):
        if os.path.isfile(model_path):
            checkpoint = torch.load(model_path, map_location="cpu")
        else:
            raise RuntimeError("checkpoint path is invalid")
        if 'projector.bin' in model_path:
            state_dict = {}
            match_keys = ['Qformer', 'query_tokens']
            for k, v in checkpoint.items():
                flag = False
                for match_key in match_keys:
                    if match_key in k:
                        flag = True
                        break
                if flag:
                    state_dict[k.replace('model.', '')] = v            

        else:
            state_dict = checkpoint["model"]
        msg = self.load_state_dict(state_dict, strict=False)

        master_print(f"Loaded Qformer from {model_path}")
        # master_print(msg)

        # return msg


def unpad_image(tensor, original_size):
    """
    Unpads a PyTorch tensor of a padded and resized image.

    Args:
    tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
    original_size (tuple): The original size of the image (height, width).

    Returns:
    torch.Tensor: The unpadded image tensor.
    """
    original_width, original_height = original_size
    current_height, current_width = tensor.shape[1:]

    original_aspect_ratio = original_width / original_height
    current_aspect_ratio = current_width / current_height

    if original_aspect_ratio > current_aspect_ratio:
        scale_factor = current_width / original_width
        new_height = int(original_height * scale_factor)
        padding = (current_height - new_height) // 2
        unpadded_tensor = tensor[:, padding:current_height - padding, :]
    else:
        scale_factor = current_height / original_height
        new_width = int(original_width * scale_factor)
        padding = (current_width - new_width) // 2
        unpadded_tensor = tensor[:, :, padding:current_width - padding]

    return unpadded_tensor


class LlavaMetaForCausalLM(ABC):

    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()
    
    def get_adapter_module(self):
        return self.get_model().get_adapter_module()

    def get_ln_vision(self):
        return self.get_model().get_ln_vision()

    def get_qformer(self):
        return self.get_model().get_qformer()

    def get_query_tokens(self):
        return self.get_model().get_query_tokens()

    def get_frame_position_encoding(self):
        return self.get_model().get_frame_position_encoding()

    def encode_images(self, images):
        # Uncomment below to get normal output without tensorrt
        image_features = self.get_vision_tower()(images)

        #return image_features
        #print(image_features.shape)
        #print(images.shape)
        #exit()
        #print(images.shape)
        #exit()
        
        #-------------------- VIT CONVERSION START --------------------------
        # import torch.onnx
        # # Initialize the model, define the input, and export to ONNX
        # model = self.get_model().get_vision_tower().half()
        # device = next(model.parameters()).device

        # # Move all buffers and constants to the correct device
        # model.to(device)

        # # Ensure all buffers are on the same device
        # # for param in model.parameters():
        # #     param.data = param.data.to(device)
        # for buffer in model.buffers():
        #     buffer.data = buffer.data.to(device)

        # # Modify any control flow that uses tensors
        # # For example, in the model's forward method, ensure that any tensor used in control flow is converted to int

        # # Create a dummy input tensor with the same shape as the input tensor you will use in your application
        # dummy_input = torch.randn(10, 3, 224, 224, device=device, dtype=next(model.parameters()).dtype).half()

        # # Export the model
        # onnx_path = "vit.onnx"
        # torch.onnx.export(
        #     model, 
        #     dummy_input, 
        #     onnx_path, 
        #     export_params=True, 
        #     #opset_version=10, 
        #     do_constant_folding=False,  # Disable constant folding, need to do this in order to get onnx file.
        #     input_names=['input'], 
        #     output_names=['output'],
        #     dynamic_axes={'input' : {0 : 'batch_size'}, 'output' : {0 : 'batch_size'}}
        # )

        # print(images.shape)
        # exit()

        #--------------------- VIT CONVERSION ENDS HERE ----------------------

        
        # Get the device of the model's parameters
        # device = torch.device('cuda:0')
        # # Initialize the model, define the input, and export to ONNX
        # model = self.get_model().get_vision_tower()
        # model = model.to(device)
        # # Create a dummy input tensor with the same shape as the input tensor you will use in your application
        # dummy_input = torch.randn(10, 3, 224, 224).to(device)

        
        # # Export the model
        # onnx_path = "simple_model.onnx"
        # torch.onnx.export(
        #                     model, 
        #                     dummy_input, 
        #                     onnx_path, 
        #                     export_params=True, 
        #                     opset_version=10, 
        #                     do_constant_folding=True, 
        #                     input_names=['input'], 
        #                     output_names=['output'],
        #                     dynamic_axes={'input' : {0 : 'batch_size'}, 'output' : {0 : 'batch_size'}})

        
        # #print(images.shape)
        # exit()
        

        if self.get_qformer():
            image_features = self.get_ln_vision()(image_features)
            query_tokens = self.get_query_tokens()
            query_tokens = query_tokens.expand(image_features.shape[0], -1, -1)
            attn_mask = torch.ones(image_features.size()[:-1], dtype=torch.long).to(image_features.device)
            dtype_ = self.get_vision_tower().dtype
            # print(dtype_)
            image_features = self.qformer_fusion(
                query_tokens.to(dtype_),
                image_features.to(dtype_), 
                attn_mask
            ).to(images.dtype)

        # image_features = self.get_model().mm_projector(image_features)
        return image_features

    def qformer_fusion(self, query_tokens, features, attn_mask=None):
        qformer = self.get_qformer()
        query_output = qformer.bert(
            query_embeds=query_tokens,
            encoder_hidden_states=features,
            encoder_attention_mask=attn_mask,
            return_dict=True
        )
        return query_output.last_hidden_state

    def prepare_inputs_labels_for_multimodal(
        self, input_ids, position_ids, attention_mask, past_key_values, labels,
        images, image_sizes=None
    ):  

        vision_tower = self.get_vision_tower()
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            return input_ids, position_ids, attention_mask, past_key_values, None, labels
        
        # image:  list(B) of tensor[1, 3, 336, 336]
        # video:  list(B) of tensor[N, 3, 336, 336]
        # video_any_res: list(B) of tensor[N, P, 3, 336, 336]
        if type(images) is list or images.ndim == 5:
            if type(images) is list:
                images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
            # video any res
            if images[0].ndim == 5:
                concat_images = torch.cat([image.flatten(0, 1) for image in images], dim=0)
                split_sizes = [image.shape[0:2] for image in images]
            else:
                concat_images = torch.cat([image for image in images], dim=0)
                split_sizes = [image.shape[0] for image in images]
            image_features = self.encode_images(concat_images)

            # add frame encoding then projector
            if images[0].ndim == 5:
                frame_ids = []
                for split_size in split_sizes:
                    frame_ids.append(torch.tensor([idx for idx in range(split_size[0]) for _ in range(split_size[1])], \
                                                    dtype=torch.long, device=image_features.device))
            else:
                frame_ids = [torch.arange(split_size, dtype=torch.long, device=image_features.device)
                                for split_size in split_sizes]
            frame_ids = torch.concat(frame_ids)
            frame_position_encoding = self.get_frame_position_encoding()
            if frame_position_encoding:

                frame_embeddings = frame_position_encoding(frame_ids).unsqueeze(-2)
                image_features += frame_embeddings

            # TODO: add fusion model, rewrite this part in the future
            adapter_module = self.get_adapter_module()
            if adapter_module:
                image_features = adapter_module(image_features, frame_ids)
            image_features = self.get_model().mm_projector(image_features)
            if images[0].ndim == 5:
                split_sizes = [split_size[0] * split_size[1] for split_size in split_sizes]
            image_features = torch.split(image_features, split_sizes, dim=0)
            if adapter_module:
                # image_features = [image_features[i].view(images[i].shape[0], images[i].shape[1], -1) for i in range(image_features.shape[0])]
                image_features = [x.view(im.shape[0], -1, x.shape[2]) for x, im in zip(image_features, images)]
                image_features = adapter_module.compress_token_per_img(image_features)

            mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat')
            image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square')
            if mm_patch_merge_type == 'flat':
                image_features = [x.flatten(0, 1) for x in image_features]
            elif mm_patch_merge_type.startswith('spatial'):
                new_image_features = []
                for image_idx, image_feature in enumerate(image_features):
                    if image_feature.shape[0] > 1:
                        base_image_feature = image_feature[0]
                        image_feature = image_feature[1:]
                        height = width = self.get_vision_tower().num_patches_per_side
                        assert height * width == base_image_feature.shape[0]
                        if image_aspect_ratio == 'anyres':
                            num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, self.get_vision_tower().config.image_size)
                            image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
                        else:
                            raise NotImplementedError
                        if 'unpad' in mm_patch_merge_type:
                            image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
                            image_feature = image_feature.flatten(1, 2).flatten(2, 3)
                            image_feature = unpad_image(image_feature, image_sizes[image_idx])
                            image_feature = torch.cat((
                                image_feature,
                                self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
                            ), dim=-1)
                            image_feature = image_feature.flatten(1, 2).transpose(0, 1)
                        else:
                            image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
                            image_feature = image_feature.flatten(0, 3)
                        image_feature = torch.cat((base_image_feature, image_feature), dim=0)
                    else:
                        image_feature = image_feature[0]
                        if 'unpad' in mm_patch_merge_type:
                            image_feature = torch.cat((
                                image_feature,
                                self.model.image_newline[None].to(image_feature.device)
                            ), dim=0)
                    new_image_features.append(image_feature)
                image_features = new_image_features
            else:
                raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")

        else:
            image_features = self.encode_images(images)

        # if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_start_end', False):
        #     raise NotImplementedError


        # TODO: Currently, all the embed_token will bu update when tune_mm_mlp_adapter = True && mm_use_start_end = True

        # Let's just add dummy tensors if they do not exist,
        # it is a headache to deal with None all the time.
        # But it is not ideal, and if you have a better idea,
        # please open an issue / submit a PR, thanks.
        _labels = labels
        _position_ids = position_ids
        _attention_mask = attention_mask
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
        else:
            attention_mask = attention_mask.bool()
        if position_ids is None:
            position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
        if labels is None:
            labels = torch.full_like(input_ids, IGNORE_INDEX)

        # remove the padding using attention_mask -- FIXME
        _input_ids = input_ids
        input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
        labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]

        new_input_embeds = []
        new_labels = []
        cur_image_idx = 0
        for batch_idx, cur_input_ids in enumerate(input_ids):
            num_images = (cur_input_ids == MM_TOKEN_INDEX).sum()
            if num_images == 0:
                cur_image_features = image_features[cur_image_idx]
                cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
                cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
                new_input_embeds.append(cur_input_embeds)
                new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                continue

            image_token_indices = [-1] + torch.where(cur_input_ids == MM_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
            cur_input_ids_noim = []
            cur_labels = labels[batch_idx]
            cur_labels_noim = []
            for i in range(len(image_token_indices) - 1):
                cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
                cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
            split_sizes = [x.shape[0] for x in cur_labels_noim]
            cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
            cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
            cur_new_input_embeds = []
            cur_new_labels = []

            for i in range(num_images + 1):
                cur_new_input_embeds.append(cur_input_embeds_no_im[i])
                cur_new_labels.append(cur_labels_noim[i])
                if i < num_images:
                    cur_image_features = image_features[cur_image_idx]
                    cur_image_idx += 1
                    cur_new_input_embeds.append(cur_image_features)
                    cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))

            cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]

            cur_new_input_embeds = torch.cat(cur_new_input_embeds)
            cur_new_labels = torch.cat(cur_new_labels)

            new_input_embeds.append(cur_new_input_embeds)
            new_labels.append(cur_new_labels)

        # Truncate sequences to max length as image embeddings can make the sequence longer
        tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
        if tokenizer_model_max_length is not None:
            new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
            new_labels = [x[:tokenizer_model_max_length] for x in new_labels]

        # Combine them
        max_len = max(x.shape[0] for x in new_input_embeds)
        batch_size = len(new_input_embeds)

        new_input_embeds_padded = []
        new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
        attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
        position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)

        for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
            cur_len = cur_new_embed.shape[0]
            if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
                new_input_embeds_padded.append(torch.cat((
                    torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
                    cur_new_embed
                ), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, -cur_len:] = cur_new_labels
                    attention_mask[i, -cur_len:] = True
                    position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
            else:
                new_input_embeds_padded.append(torch.cat((
                    cur_new_embed,
                    torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
                ), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, :cur_len] = cur_new_labels
                    attention_mask[i, :cur_len] = True
                    position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)

        new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)

        if _labels is None:
            new_labels = None
        else:
            new_labels = new_labels_padded

        if _attention_mask is None:
            attention_mask = None
        else:
            attention_mask = attention_mask.to(dtype=_attention_mask.dtype)

        if _position_ids is None:
            position_ids = None

        return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels

    def initialize_vision_tokenizer(self, model_args, tokenizer):
        if model_args.mm_use_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_VIDEO_PATCH_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

        if model_args.mm_use_start_end:
            num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

            if num_new_tokens > 0:
                input_embeddings = self.get_input_embeddings().weight.data
                output_embeddings = self.get_output_embeddings().weight.data

                input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)
                output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)

                input_embeddings[-num_new_tokens:] = input_embeddings_avg
                output_embeddings[-num_new_tokens:] = output_embeddings_avg

            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                if 'gemma' in model_args.model_name_or_path:
                    # gemma use the same embedding for input and output
                    pass
                else:
                    for p in self.get_output_embeddings().parameters():
                        p.requires_grad = False

            if model_args.pretrain_mm_mlp_adapter:
                # raise NotImplementedError
                mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
                mm_projector_weights = {'.'.join(k.split('.')[1:]): v for k, v in mm_projector_weights.items()}
                # embed_tokens_weight = mm_projector_weights['embed_tokens.weight']
                # input_embeddings[:] = embed_tokens_weight
                # if 'gemma' in model_args.model_name_or_path:
                #     output_embeddings[:] = embed_tokens_weight
                assert num_new_tokens == 4
                # if input_embeddings.shape == embed_tokens_weight.shape:
                #     input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
                # elif embed_tokens_weight.shape[0] == num_new_tokens:
                #     input_embeddings[-num_new_tokens:] = embed_tokens_weight
                # else:
                #     raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
        elif model_args.mm_use_patch_token:
            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = False
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False