File size: 1,550 Bytes
bbfa6f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

deepspeed \
    --num_nodes=1 \
    --num_gpus=8 \
    --master_port=25001 \
    llava/train/train_mem.py \
    --deepspeed ./scripts/zero2.json \
    --model_name_or_path mistralai/Mistral-7B-Instruct-v0.1 \
    --version v1 \
    --dataset_config /mnt/bn/algo-masp-nas-2/xiangchen/repo/LLaVA/llava/configs/gpt4v_increasing_ablation/finetune_videollava.yaml \
    --vision_tower google/siglip-large-patch16-256 \
    --pretrain_mm_mlp_adapter /mnt/bn/algo-masp-nas-2/xiangchen/model/masp_models/checkpoints/llava-pretrain-googlesiglip_projector/checkpoint-4000/mm_projector.bin \
    --adapter_module_name none_compress_token_v1_64 \
    --mm_vision_select_layer -2 \
    --mm_use_start_end True \
    --mm_use_patch_token False \
    --image_aspect_ratio pad \
    --num_token_per_image 64 \
    --num_query_token 64 \
    --bf16 True \
    --output_dir /mnt/bn/masp-nas/xiangchen/model/masp_models/checkpoints/llava-mistral-googlesiglip_llava_800k \
    --group_by_modality_length True \
    --num_train_epochs 1 \
    --per_device_train_batch_size 4 \
    --per_device_eval_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --evaluation_strategy "no" \
    --save_strategy "steps" \
    --save_steps 2000 \
    --save_total_limit 1 \
    --learning_rate 1e-5 \
    --weight_decay 0. \
    --warmup_ratio 0.03 \
    --lr_scheduler_type "cosine" \
    --logging_steps 1 \
    --tf32 True \
    --model_max_length 4096 \
    --gradient_checkpointing True \
    --dataloader_num_workers 2 \
    --lazy_preprocess True \
    --report_to none