|
import sys |
|
|
|
import datasets |
|
import torch |
|
import re |
|
import os |
|
import subprocess |
|
import numpy as np |
|
|
|
from llava.datasets.builder import DATASETS |
|
|
|
from typing import Dict, Optional, Sequence, List |
|
from llava.datasets.data_cfgs import data_configs |
|
from llava.datasets.base_dataset import FramesTaskDataset |
|
from llava.datasets.data_cfgs import data_configs |
|
from llava.utils import master_print |
|
import pickle |
|
from pathlib import Path |
|
import random |
|
from llava.datasets.prompts import tt_caption_prompt, internvid_prompt |
|
from llava.constants import DEFAULT_VIDEO_TOKEN |
|
from PIL import Image |
|
import json |
|
import numpy as np |
|
|
|
class GPT4VInternalDataset(FramesTaskDataset): |
|
def __init__(self, anno_path=None, data_args=None, fps=0.5, conv_type='single', task_types=None, name='gpt4v_internal'): |
|
self.default_fps = 2.0 |
|
self.fps = fps |
|
self.conv_type = conv_type |
|
self.task_types = task_types |
|
self.annotation = self.get_dataset(anno_path) |
|
assert self.conv_type in ('single', 'multi'), "gpt4v_public conv type must in single/multi" |
|
|
|
|
|
super().__init__(anno_path=anno_path, |
|
data_args=data_args, |
|
fps=fps, |
|
name=name) |
|
def __len__(self): |
|
return len(self.annotation) |
|
|
|
def get_dataset(self, anno_path): |
|
dataset = [] |
|
anno_path = Path(anno_path) |
|
with anno_path.open('rb') as f: |
|
data = json.load(f) |
|
for info in data: |
|
filtered_qa = [] |
|
for qa in info['qa_pairs']: |
|
if len(qa['question']) == 0 or len(qa['answer']) == 0: |
|
continue |
|
filtered_qa.append(qa) |
|
info['qa_pairs'] = filtered_qa |
|
|
|
for task_type in self.task_types: |
|
info_task = info.copy() |
|
if len(info_task[task_type]) == 0: |
|
continue |
|
if task_type == 'qa_pairs' and self.conv_type == 'single': |
|
for qa_pair in info_task[task_type]: |
|
one_info = info_task.copy() |
|
one_info[task_type] = [qa_pair] |
|
one_info.update({ |
|
'task_type': task_type |
|
}) |
|
dataset.append(one_info) |
|
else: |
|
info_task.update({ |
|
'task_type': task_type |
|
}) |
|
dataset.append(info_task) |
|
|
|
return dataset |
|
|
|
@staticmethod |
|
def _sample_frames(frames, num_segments): |
|
indices = np.linspace(start=0, stop=len(frames) - 1, num=num_segments).astype(int) |
|
|
|
frames = [frames[ind] for ind in indices] |
|
|
|
return frames |
|
|
|
|
|
def text_preprocess(self, item) -> List[Dict[str, str]]: |
|
all_convs = [] |
|
|
|
if item['task_type'] == 'summary': |
|
all_convs.append([ |
|
{ |
|
'from': 'human', |
|
'value': random.choice(internvid_prompt) |
|
}, |
|
{ |
|
'from': 'model', |
|
'value': item['summary'] |
|
} |
|
]) |
|
elif item['task_type'] == 'detail': |
|
all_convs.append([ |
|
{ |
|
'from': 'human', |
|
'value': random.choice(tt_caption_prompt) |
|
}, |
|
{ |
|
'from': 'model', |
|
'value': item['detail'] |
|
} |
|
]) |
|
else: |
|
for qa in item['qa_pairs']: |
|
all_convs.append([ |
|
{ |
|
'from': 'human', |
|
'value': qa['question'] |
|
}, |
|
{ |
|
'from': 'model', |
|
'value': qa['answer'] |
|
} |
|
]) |
|
|
|
conversations = [] |
|
random.shuffle(all_convs) |
|
for idx, conv in enumerate(all_convs): |
|
if idx == 0: |
|
conv[0]['value'] = DEFAULT_VIDEO_TOKEN + conv[0]['value'] |
|
conversations.extend(conv) |
|
|
|
return conversations |
|
|
|
|
|
def vis_preprocess(self, vis_path): |
|
image_files = [(os.path.splitext(img)[0], img) for img in os.listdir(vis_path) if not img.startswith('cuttime')] |
|
image_files = [(int(x[0]), x[1]) for x in image_files] |
|
image_files = sorted(image_files, key=lambda img: img[0]) |
|
intervals = np.linspace(start=0, stop=len(image_files)-1, num=10).astype(int) |
|
image_files = [image_files[i] for i in intervals] |
|
|
|
if self.num_segments > 0 and len(image_files) > self.num_segments: |
|
image_files = self._sample_frames(image_files, self.num_segments) |
|
|
|
images = [] |
|
for image_file in image_files: |
|
try: |
|
images.append(Image.open(os.path.join(vis_path, image_file[1])).convert('RGB')) |
|
except Exception as e: |
|
continue |
|
formatted_images = [] |
|
for image in images: |
|
im = self.preprocess_image(image) |
|
if isinstance(im, list): |
|
formatted_images.extend(im) |
|
else: |
|
formatted_images.append(im) |
|
|
|
|
|
|
|
return formatted_images |
|
|
|
def __getitem__(self, i) -> Dict[str, torch.Tensor]: |
|
item = self.annotation[i] |
|
|
|
ret = { |
|
'images': self.vis_preprocess(item['vis_path']), |
|
'conversations': self.text_preprocess(item) |
|
} |
|
if 'id' in item: |
|
ret['id'] = item['id'] |
|
|
|
return ret |
|
|
|
|
|
@DATASETS.register_obj |
|
def gpt4v_internal(data_args): |
|
data_cfg = data_configs['gpt4v_internal'] |
|
train_data_path = None |
|
if 'train_data_path' in data_args.external_args: |
|
train_data_path = data_args.external_args['train_data_path'] |
|
else: |
|
train_data_path = data_cfg['train_data_path'] |
|
fps, conv_type, task_types = data_args.external_args['fps'], data_args.external_args['conv_type'], data_args.external_args['task_types'] |
|
return GPT4VInternalDataset(train_data_path, data_args, fps, conv_type, task_types) |
|
|
|
|
|
|
|
|
|
|