model1 / llava /datasets /gpt4v_internal_dataset.py
multitensor's picture
Upload folder using huggingface_hub
bbfa6f6 verified
import sys
import datasets
import torch
import re
import os
import subprocess
import numpy as np
from llava.datasets.builder import DATASETS
from typing import Dict, Optional, Sequence, List
from llava.datasets.data_cfgs import data_configs
from llava.datasets.base_dataset import FramesTaskDataset
from llava.datasets.data_cfgs import data_configs
from llava.utils import master_print
import pickle
from pathlib import Path
import random
from llava.datasets.prompts import tt_caption_prompt, internvid_prompt
from llava.constants import DEFAULT_VIDEO_TOKEN
from PIL import Image
import json
import numpy as np
class GPT4VInternalDataset(FramesTaskDataset):
def __init__(self, anno_path=None, data_args=None, fps=0.5, conv_type='single', task_types=None, name='gpt4v_internal'):
self.default_fps = 2.0
self.fps = fps
self.conv_type = conv_type
self.task_types = task_types
self.annotation = self.get_dataset(anno_path)
assert self.conv_type in ('single', 'multi'), "gpt4v_public conv type must in single/multi"
# assert hasattr(self.data_args, 'task_types') , "gpt4v_internal must have key 'task_types' in yaml config"
# master_print(f"Finished loading dataset {name} {len(self.annotation)} samples...")
super().__init__(anno_path=anno_path,
data_args=data_args,
fps=fps,
name=name)
def __len__(self):
return len(self.annotation)
def get_dataset(self, anno_path):
dataset = []
anno_path = Path(anno_path)
with anno_path.open('rb') as f:
data = json.load(f)
for info in data:
filtered_qa = []
for qa in info['qa_pairs']:
if len(qa['question']) == 0 or len(qa['answer']) == 0:
continue
filtered_qa.append(qa)
info['qa_pairs'] = filtered_qa
for task_type in self.task_types:
info_task = info.copy()
if len(info_task[task_type]) == 0:
continue
if task_type == 'qa_pairs' and self.conv_type == 'single':
for qa_pair in info_task[task_type]:
one_info = info_task.copy()
one_info[task_type] = [qa_pair]
one_info.update({
'task_type': task_type
})
dataset.append(one_info)
else:
info_task.update({
'task_type': task_type
})
dataset.append(info_task)
return dataset
@staticmethod
def _sample_frames(frames, num_segments):
indices = np.linspace(start=0, stop=len(frames) - 1, num=num_segments).astype(int)
frames = [frames[ind] for ind in indices]
return frames
def text_preprocess(self, item) -> List[Dict[str, str]]:
all_convs = []
# TODO: different prompt for summary and detail
if item['task_type'] == 'summary':
all_convs.append([
{
'from': 'human',
'value': random.choice(internvid_prompt)
},
{
'from': 'model',
'value': item['summary']
}
])
elif item['task_type'] == 'detail':
all_convs.append([
{
'from': 'human',
'value': random.choice(tt_caption_prompt)
},
{
'from': 'model',
'value': item['detail']
}
])
else:
for qa in item['qa_pairs']:
all_convs.append([
{
'from': 'human',
'value': qa['question']
},
{
'from': 'model',
'value': qa['answer']
}
])
conversations = []
random.shuffle(all_convs)
for idx, conv in enumerate(all_convs):
if idx == 0:
conv[0]['value'] = DEFAULT_VIDEO_TOKEN + conv[0]['value']
conversations.extend(conv)
return conversations
def vis_preprocess(self, vis_path):
image_files = [(os.path.splitext(img)[0], img) for img in os.listdir(vis_path) if not img.startswith('cuttime')]
image_files = [(int(x[0]), x[1]) for x in image_files]
image_files = sorted(image_files, key=lambda img: img[0])
intervals = np.linspace(start=0, stop=len(image_files)-1, num=10).astype(int)
image_files = [image_files[i] for i in intervals]
if self.num_segments > 0 and len(image_files) > self.num_segments:
image_files = self._sample_frames(image_files, self.num_segments)
images = []
for image_file in image_files:
try:
images.append(Image.open(os.path.join(vis_path, image_file[1])).convert('RGB'))
except Exception as e:
continue
formatted_images = []
for image in images:
im = self.preprocess_image(image)
if isinstance(im, list):
formatted_images.extend(im)
else:
formatted_images.append(im)
# images = [self.preprocess_image(image) for image in images]
return formatted_images
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
item = self.annotation[i]
ret = {
'images': self.vis_preprocess(item['vis_path']),
'conversations': self.text_preprocess(item)
}
if 'id' in item:
ret['id'] = item['id']
return ret
@DATASETS.register_obj
def gpt4v_internal(data_args):
data_cfg = data_configs['gpt4v_internal']
train_data_path = None
if 'train_data_path' in data_args.external_args:
train_data_path = data_args.external_args['train_data_path']
else:
train_data_path = data_cfg['train_data_path']
fps, conv_type, task_types = data_args.external_args['fps'], data_args.external_args['conv_type'], data_args.external_args['task_types']
return GPT4VInternalDataset(train_data_path, data_args, fps, conv_type, task_types)