|
import datasets |
|
import torch |
|
import re |
|
import os |
|
import subprocess |
|
from llava.datasets.builder import DATASETS |
|
|
|
from typing import Dict, Optional, Sequence, List |
|
from llava.datasets.data_cfgs import data_configs |
|
from llava.datasets.base_dataset import ImageTaskDataset |
|
from llava.constants import DEFAULT_IMAGE_TOKEN |
|
from llava.datasets.data_cfgs import data_configs |
|
from llava.utils import master_print |
|
|
|
class LKImageDataset(ImageTaskDataset): |
|
def __init__(self, anno_path=None, data_args=None, aux_args=None, name='lk_image'): |
|
super().__init__(anno_path=anno_path, |
|
data_args=data_args, |
|
name=name) |
|
|
|
def __len__(self): |
|
return len(self.annotation) |
|
|
|
def text_preprocess(self, item) -> List[Dict[str, str]]: |
|
return item['conversations'] |
|
|
|
|
|
def __getitem__(self, i) -> Dict[str, torch.Tensor]: |
|
item = self.annotation[i] |
|
vis_path = item['image'] |
|
ret = { |
|
'images': self.vis_preprocess(vis_path), |
|
'conversations': self.text_preprocess(item) |
|
} |
|
if 'id' in item: |
|
ret['id'] = item['id'] |
|
return ret |
|
|
|
@DATASETS.register_obj |
|
def lk_image(data_args): |
|
data_cfg = data_configs['lk_image'] |
|
return LKImageDataset(data_cfg['train_data_path'], data_args, aux_args=data_cfg) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|