|
import os |
|
import random |
|
import json |
|
from pathlib import Path |
|
from llava.datasets.builder import DATASETS |
|
|
|
from typing import Dict, Optional, Sequence, List |
|
from llava.datasets.data_cfgs import data_configs |
|
from llava.datasets.base_dataset import FramesTaskDataset |
|
from llava.datasets.prompts import tt_caption_prompt, tt_caption_prompt2 |
|
from llava.constants import DEFAULT_VIDEO_TOKEN |
|
|
|
|
|
class TTVqaDataset(FramesTaskDataset): |
|
def __init__(self, anno_path, data_args=None, fps=2.0, data_cfgs=None, name='tt_vqa'): |
|
super().__init__(anno_path=anno_path, |
|
data_args=data_args, |
|
fps=fps, |
|
name=name) |
|
self.default_fps = data_cfgs['fps'] |
|
|
|
|
|
def text_preprocess(self, item) -> List[Dict[str, str]]: |
|
all_convs = [] |
|
if hasattr(self.data_args, 'caption_prompt'): |
|
cap_prompt = eval(self.data_args.caption_prompt) |
|
else: |
|
cap_prompt = tt_caption_prompt |
|
if 'caption' in item: |
|
all_convs.append([ |
|
{ |
|
'from': 'human', |
|
'value': random.choice(cap_prompt) |
|
}, |
|
{ |
|
'from': 'model', |
|
'value': item['caption'] |
|
} |
|
]) |
|
if 'qas' in item: |
|
for idx, qa in enumerate(item['qas']): |
|
all_convs.append([ |
|
{ |
|
'from': 'human', |
|
'value': qa['q'] |
|
}, |
|
{ |
|
'from': 'model', |
|
'value': qa['a'] |
|
} |
|
]) |
|
|
|
conversations = [] |
|
random.shuffle(all_convs) |
|
for idx, conv in enumerate(all_convs): |
|
if idx == 0: |
|
conv[0]['value'] = DEFAULT_VIDEO_TOKEN + conv[0]['value'] |
|
conversations.extend(conv) |
|
|
|
return conversations |
|
|
|
|
|
@DATASETS.register_obj |
|
def tt_vqa(data_args): |
|
train_data_path = None |
|
if 'train_data_path' in data_args.external_args: |
|
train_data_path = data_args.external_args['train_data_path'] |
|
else: |
|
train_data_path = data_configs["tt_vqa"]['train_data_path'] |
|
return TTVqaDataset(train_data_path, data_args, 2.0, data_configs["tt_vqa"]) |
|
|
|
|