model1 / llava /model /llava_arch.py
multitensor's picture
Upload folder using huggingface_hub
bbfa6f6 verified
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from email.mime import image
import os
from abc import ABC, abstractmethod
import torch
import torch.nn as nn
from .multimodal_encoder.builder import build_adapter_module, build_vision_tower, build_Qformer
from .multimodal_projector.builder import build_vision_projector
from llava.constants import IGNORE_INDEX, MM_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VIDEO_PATCH_TOKEN, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN
from llava.mm_utils import get_anyres_image_grid_shape
from llava.utils import master_print
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
import subprocess
import torch.onnx
class LlavaMetaModel:
def __init__(self, config):
super(LlavaMetaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(config, delay_load=True)
self.mm_projector = build_vision_projector(config)
if getattr(config, "qformer_model_path", None):
self.Qformer, self.ln_vision, self.query_tokens = build_Qformer(
config.num_query_token, self.vision_tower.hidden_size)
self.frame_position_encoding = nn.Embedding(
config.max_num_segments,
self.Qformer.config.hidden_size
)
if getattr(config, "adapter_module_name", None):
self.adapter_module = build_adapter_module(config, self.vision_tower.hidden_size)
if 'unpad' in getattr(config, 'mm_patch_merge_type', ''):
self.image_newline = nn.Parameter(
torch.empty(config.hidden_size, dtype=self.dtype)
)
# Prepare TRT
# self.trt_logger = trt.Logger(trt.Logger.WARNING)
# self.trt_runtime = trt.Runtime(self.trt_logger)
# trt.init_libnvinfer_plugins(None, "")
# nvidia_smi_output = subprocess.check_output(["nvidia-smi", "-L"]).decode()
# gpu_info = nvidia_smi_output.split(":")[1].split("(")[0].strip()
# print(gpu_info)
# if "A10" in gpu_info:
# vit_tagging_path = "./a10/vit.trt"
# elif "A30" in gpu_info:
# vit_tagging_path = "./a30/vit.trt"
# else:
# assert False,logging.info("just support in A10,A30")
# exit()
# with open(vit_tagging_path, 'rb') as f:
# engine_data_vit = f.read()
# self.vit_tag_trt_engine = self.trt_runtime.deserialize_cuda_engine(engine_data_vit)
# self.vit_tag_trt_context = self.vit_tag_trt_engine.create_execution_context()
# self.stream = cuda.Stream()
# TRT Implementation code stops at self.stream, proceed to the next part
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def get_adapter_module(self):
adapter_module = getattr(self, 'adapter_module', None)
if type(adapter_module) is list:
adapter_module = adapter_module[0]
return adapter_module
def get_qformer(self):
qformer = getattr(self, 'Qformer', None)
if type(qformer) is list:
qformer = qformer[0]
return qformer
def get_ln_vision(self):
ln_vision = getattr(self, 'ln_vision', None)
if type(ln_vision) is list:
ln_vision = ln_vision[0]
return ln_vision
def get_query_tokens(self):
query_tokens = getattr(self, 'query_tokens', None)
if type(query_tokens) is list:
query_tokens = query_tokens[0]
return query_tokens
def get_frame_position_encoding(self):
frame_position_encoding = getattr(self, 'frame_position_encoding', None)
if type(frame_position_encoding) is list:
frame_position_encoding = frame_position_encoding[0]
return frame_position_encoding
def initialize_vision_modules(self, model_args, fsdp=None):
vision_tower = model_args.vision_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
mm_patch_merge_type = model_args.mm_patch_merge_type
image_grid_pinpoints = model_args.image_grid_pinpoints
self.config.mm_vision_tower = vision_tower
self.config.img_size = model_args.img_size
self.config.drop_path_rate = model_args.drop_path_rate
self.config.vit_precision = model_args.vit_precision
self.config.vit_model_path = model_args.vit_model_path
self.config.num_query_token = model_args.num_query_token
self.config.qformer_model_path = model_args.qformer_model_path
self.config.adapter_module_name = model_args.adapter_module_name
self.config.adapter_module_path = model_args.adapter_module_path
self.config.max_num_segments = model_args.max_num_segments
self.config.pretrain_mm_mlp_adapter = pretrain_mm_mlp_adapter
# TODO: FSDP training is not ready
if self.get_vision_tower() is None:
vision_tower = build_vision_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
else:
self.vision_tower = vision_tower
else:
if fsdp is not None and len(fsdp) > 0:
vision_tower = self.vision_tower[0]
else:
vision_tower = self.vision_tower
vision_tower.load_model()
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = vision_tower.hidden_size
self.config.mm_vision_hidden_size = vision_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
self.config.mm_patch_merge_type = mm_patch_merge_type
self.config.image_grid_pinpoints = image_grid_pinpoints
if getattr(model_args, "qformer_model_path", None):
if self.get_qformer() is None:
self.Qformer, self.ln_vision, self.query_tokens = build_Qformer(
model_args.num_query_token, self.vision_tower.hidden_size)
self.frame_position_encoding = nn.Embedding(
model_args.max_num_segments,
self.Qformer.config.hidden_size
)
self.config.mm_hidden_size = self.Qformer.config.hidden_size
# self.Qformer = self.Qformer.to(torch.bfloat16)
if model_args.qformer_model_path != 'from_scratch':
self.load_pretrained_qformer(model_args.qformer_model_path)
if getattr(model_args, 'adapter_module_name', None):
if self.get_adapter_module() is None:
self.adapter_module = build_adapter_module(self.config, self.vision_tower.hidden_size)
self.adapter_module.load_model()
self.config.mm_hidden_size = self.adapter_module.output_dim
if getattr(self, 'mm_projector', None) is None:
self.mm_projector = build_vision_projector(self.config)
if 'unpad' in mm_patch_merge_type:
embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
self.image_newline = nn.Parameter(
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
def get_variable_frame_encoding_w(model_weights, load_weights):
model_len = model_weights.shape[0]
load_weights = {'.'.join(k.split('.')[1:]): v for k, v in load_weights.items()}
load_len = load_weights['frame_position_encoding.weight'].shape[0]
if model_len == load_len:
return get_w(load_weights, 'frame_position_encoding')
elif model_len < load_len:
value = load_weights['frame_position_encoding.weight'][:model_len]
return {'weight': value}
else:
value = model_weights.clone().cpu()
value[:load_len] = load_weights['frame_position_encoding.weight']
return {'weight': value}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
if self.get_frame_position_encoding():
self.frame_position_encoding.load_state_dict(get_variable_frame_encoding_w(self.frame_position_encoding.weight, mm_projector_weights))
master_print(f"Loaded pretrained parameters from {pretrain_mm_mlp_adapter}")
def load_pretrained_qformer(self, model_path):
if os.path.isfile(model_path):
checkpoint = torch.load(model_path, map_location="cpu")
else:
raise RuntimeError("checkpoint path is invalid")
if 'projector.bin' in model_path:
state_dict = {}
match_keys = ['Qformer', 'query_tokens']
for k, v in checkpoint.items():
flag = False
for match_key in match_keys:
if match_key in k:
flag = True
break
if flag:
state_dict[k.replace('model.', '')] = v
else:
state_dict = checkpoint["model"]
msg = self.load_state_dict(state_dict, strict=False)
master_print(f"Loaded Qformer from {model_path}")
# master_print(msg)
# return msg
def unpad_image(tensor, original_size):
"""
Unpads a PyTorch tensor of a padded and resized image.
Args:
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
original_size (tuple): The original size of the image (height, width).
Returns:
torch.Tensor: The unpadded image tensor.
"""
original_width, original_height = original_size
current_height, current_width = tensor.shape[1:]
original_aspect_ratio = original_width / original_height
current_aspect_ratio = current_width / current_height
if original_aspect_ratio > current_aspect_ratio:
scale_factor = current_width / original_width
new_height = int(original_height * scale_factor)
padding = (current_height - new_height) // 2
unpadded_tensor = tensor[:, padding:current_height - padding, :]
else:
scale_factor = current_height / original_height
new_width = int(original_width * scale_factor)
padding = (current_width - new_width) // 2
unpadded_tensor = tensor[:, :, padding:current_width - padding]
return unpadded_tensor
class LlavaMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def get_adapter_module(self):
return self.get_model().get_adapter_module()
def get_ln_vision(self):
return self.get_model().get_ln_vision()
def get_qformer(self):
return self.get_model().get_qformer()
def get_query_tokens(self):
return self.get_model().get_query_tokens()
def get_frame_position_encoding(self):
return self.get_model().get_frame_position_encoding()
def encode_images(self, images):
# Uncomment below to get normal output without tensorrt
image_features = self.get_vision_tower()(images)
#return image_features
#print(image_features.shape)
#print(images.shape)
#exit()
#print(images.shape)
#exit()
#-------------------- VIT CONVERSION START --------------------------
# import torch.onnx
# # Initialize the model, define the input, and export to ONNX
# model = self.get_model().get_vision_tower().half()
# device = next(model.parameters()).device
# # Move all buffers and constants to the correct device
# model.to(device)
# # Ensure all buffers are on the same device
# # for param in model.parameters():
# # param.data = param.data.to(device)
# for buffer in model.buffers():
# buffer.data = buffer.data.to(device)
# # Modify any control flow that uses tensors
# # For example, in the model's forward method, ensure that any tensor used in control flow is converted to int
# # Create a dummy input tensor with the same shape as the input tensor you will use in your application
# dummy_input = torch.randn(10, 3, 224, 224, device=device, dtype=next(model.parameters()).dtype).half()
# # Export the model
# onnx_path = "vit.onnx"
# torch.onnx.export(
# model,
# dummy_input,
# onnx_path,
# export_params=True,
# #opset_version=10,
# do_constant_folding=False, # Disable constant folding, need to do this in order to get onnx file.
# input_names=['input'],
# output_names=['output'],
# dynamic_axes={'input' : {0 : 'batch_size'}, 'output' : {0 : 'batch_size'}}
# )
# print(images.shape)
# exit()
#--------------------- VIT CONVERSION ENDS HERE ----------------------
# Get the device of the model's parameters
# device = torch.device('cuda:0')
# # Initialize the model, define the input, and export to ONNX
# model = self.get_model().get_vision_tower()
# model = model.to(device)
# # Create a dummy input tensor with the same shape as the input tensor you will use in your application
# dummy_input = torch.randn(10, 3, 224, 224).to(device)
# # Export the model
# onnx_path = "simple_model.onnx"
# torch.onnx.export(
# model,
# dummy_input,
# onnx_path,
# export_params=True,
# opset_version=10,
# do_constant_folding=True,
# input_names=['input'],
# output_names=['output'],
# dynamic_axes={'input' : {0 : 'batch_size'}, 'output' : {0 : 'batch_size'}})
# #print(images.shape)
# exit()
if self.get_qformer():
image_features = self.get_ln_vision()(image_features)
query_tokens = self.get_query_tokens()
query_tokens = query_tokens.expand(image_features.shape[0], -1, -1)
attn_mask = torch.ones(image_features.size()[:-1], dtype=torch.long).to(image_features.device)
dtype_ = self.get_vision_tower().dtype
# print(dtype_)
image_features = self.qformer_fusion(
query_tokens.to(dtype_),
image_features.to(dtype_),
attn_mask
).to(images.dtype)
# image_features = self.get_model().mm_projector(image_features)
return image_features
def qformer_fusion(self, query_tokens, features, attn_mask=None):
qformer = self.get_qformer()
query_output = qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=features,
encoder_attention_mask=attn_mask,
return_dict=True
)
return query_output.last_hidden_state
def prepare_inputs_labels_for_multimodal(
self, input_ids, position_ids, attention_mask, past_key_values, labels,
images, image_sizes=None
):
vision_tower = self.get_vision_tower()
if vision_tower is None or images is None or input_ids.shape[1] == 1:
return input_ids, position_ids, attention_mask, past_key_values, None, labels
# image: list(B) of tensor[1, 3, 336, 336]
# video: list(B) of tensor[N, 3, 336, 336]
# video_any_res: list(B) of tensor[N, P, 3, 336, 336]
if type(images) is list or images.ndim == 5:
if type(images) is list:
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
# video any res
if images[0].ndim == 5:
concat_images = torch.cat([image.flatten(0, 1) for image in images], dim=0)
split_sizes = [image.shape[0:2] for image in images]
else:
concat_images = torch.cat([image for image in images], dim=0)
split_sizes = [image.shape[0] for image in images]
image_features = self.encode_images(concat_images)
# add frame encoding then projector
if images[0].ndim == 5:
frame_ids = []
for split_size in split_sizes:
frame_ids.append(torch.tensor([idx for idx in range(split_size[0]) for _ in range(split_size[1])], \
dtype=torch.long, device=image_features.device))
else:
frame_ids = [torch.arange(split_size, dtype=torch.long, device=image_features.device)
for split_size in split_sizes]
frame_ids = torch.concat(frame_ids)
frame_position_encoding = self.get_frame_position_encoding()
if frame_position_encoding:
frame_embeddings = frame_position_encoding(frame_ids).unsqueeze(-2)
image_features += frame_embeddings
# TODO: add fusion model, rewrite this part in the future
adapter_module = self.get_adapter_module()
if adapter_module:
image_features = adapter_module(image_features, frame_ids)
image_features = self.get_model().mm_projector(image_features)
if images[0].ndim == 5:
split_sizes = [split_size[0] * split_size[1] for split_size in split_sizes]
image_features = torch.split(image_features, split_sizes, dim=0)
if adapter_module:
# image_features = [image_features[i].view(images[i].shape[0], images[i].shape[1], -1) for i in range(image_features.shape[0])]
image_features = [x.view(im.shape[0], -1, x.shape[2]) for x, im in zip(image_features, images)]
image_features = adapter_module.compress_token_per_img(image_features)
mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat')
image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square')
if mm_patch_merge_type == 'flat':
image_features = [x.flatten(0, 1) for x in image_features]
elif mm_patch_merge_type.startswith('spatial'):
new_image_features = []
for image_idx, image_feature in enumerate(image_features):
if image_feature.shape[0] > 1:
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
height = width = self.get_vision_tower().num_patches_per_side
assert height * width == base_image_feature.shape[0]
if image_aspect_ratio == 'anyres':
num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, self.get_vision_tower().config.image_size)
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
else:
raise NotImplementedError
if 'unpad' in mm_patch_merge_type:
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(image_feature, image_sizes[image_idx])
image_feature = torch.cat((
image_feature,
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
), dim=-1)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
else:
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
image_feature = image_feature.flatten(0, 3)
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
else:
image_feature = image_feature[0]
if 'unpad' in mm_patch_merge_type:
image_feature = torch.cat((
image_feature,
self.model.image_newline[None].to(image_feature.device)
), dim=0)
new_image_features.append(image_feature)
image_features = new_image_features
else:
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
else:
image_features = self.encode_images(images)
# if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_start_end', False):
# raise NotImplementedError
# TODO: Currently, all the embed_token will bu update when tune_mm_mlp_adapter = True && mm_use_start_end = True
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- FIXME
_input_ids = input_ids
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == MM_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == MM_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
if tokenizer_model_max_length is not None:
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
new_input_embeds_padded.append(torch.cat((
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
cur_new_embed
), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
else:
new_input_embeds_padded.append(torch.cat((
cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
def initialize_vision_tokenizer(self, model_args, tokenizer):
if model_args.mm_use_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_VIDEO_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
if 'gemma' in model_args.model_name_or_path:
# gemma use the same embedding for input and output
pass
else:
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if model_args.pretrain_mm_mlp_adapter:
# raise NotImplementedError
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
mm_projector_weights = {'.'.join(k.split('.')[1:]): v for k, v in mm_projector_weights.items()}
# embed_tokens_weight = mm_projector_weights['embed_tokens.weight']
# input_embeddings[:] = embed_tokens_weight
# if 'gemma' in model_args.model_name_or_path:
# output_embeddings[:] = embed_tokens_weight
assert num_new_tokens == 4
# if input_embeddings.shape == embed_tokens_weight.shape:
# input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
# elif embed_tokens_weight.shape[0] == num_new_tokens:
# input_embeddings[-num_new_tokens:] = embed_tokens_weight
# else:
# raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
elif model_args.mm_use_patch_token:
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False