|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from email.mime import image |
|
import os |
|
from abc import ABC, abstractmethod |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from .multimodal_encoder.builder import build_adapter_module, build_vision_tower, build_Qformer |
|
from .multimodal_projector.builder import build_vision_projector |
|
|
|
from llava.constants import IGNORE_INDEX, MM_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VIDEO_PATCH_TOKEN, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN |
|
|
|
from llava.mm_utils import get_anyres_image_grid_shape |
|
from llava.utils import master_print |
|
import tensorrt as trt |
|
import pycuda.driver as cuda |
|
import pycuda.autoinit |
|
import subprocess |
|
import torch.onnx |
|
|
|
class LlavaMetaModel: |
|
|
|
def __init__(self, config): |
|
super(LlavaMetaModel, self).__init__(config) |
|
|
|
if hasattr(config, "mm_vision_tower"): |
|
self.vision_tower = build_vision_tower(config, delay_load=True) |
|
self.mm_projector = build_vision_projector(config) |
|
if getattr(config, "qformer_model_path", None): |
|
self.Qformer, self.ln_vision, self.query_tokens = build_Qformer( |
|
config.num_query_token, self.vision_tower.hidden_size) |
|
self.frame_position_encoding = nn.Embedding( |
|
config.max_num_segments, |
|
self.Qformer.config.hidden_size |
|
) |
|
if getattr(config, "adapter_module_name", None): |
|
self.adapter_module = build_adapter_module(config, self.vision_tower.hidden_size) |
|
if 'unpad' in getattr(config, 'mm_patch_merge_type', ''): |
|
self.image_newline = nn.Parameter( |
|
torch.empty(config.hidden_size, dtype=self.dtype) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_vision_tower(self): |
|
vision_tower = getattr(self, 'vision_tower', None) |
|
if type(vision_tower) is list: |
|
vision_tower = vision_tower[0] |
|
return vision_tower |
|
|
|
def get_adapter_module(self): |
|
adapter_module = getattr(self, 'adapter_module', None) |
|
if type(adapter_module) is list: |
|
adapter_module = adapter_module[0] |
|
return adapter_module |
|
|
|
def get_qformer(self): |
|
qformer = getattr(self, 'Qformer', None) |
|
if type(qformer) is list: |
|
qformer = qformer[0] |
|
return qformer |
|
|
|
def get_ln_vision(self): |
|
ln_vision = getattr(self, 'ln_vision', None) |
|
if type(ln_vision) is list: |
|
ln_vision = ln_vision[0] |
|
return ln_vision |
|
|
|
def get_query_tokens(self): |
|
query_tokens = getattr(self, 'query_tokens', None) |
|
if type(query_tokens) is list: |
|
query_tokens = query_tokens[0] |
|
return query_tokens |
|
|
|
def get_frame_position_encoding(self): |
|
frame_position_encoding = getattr(self, 'frame_position_encoding', None) |
|
if type(frame_position_encoding) is list: |
|
frame_position_encoding = frame_position_encoding[0] |
|
return frame_position_encoding |
|
|
|
def initialize_vision_modules(self, model_args, fsdp=None): |
|
vision_tower = model_args.vision_tower |
|
mm_vision_select_layer = model_args.mm_vision_select_layer |
|
mm_vision_select_feature = model_args.mm_vision_select_feature |
|
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter |
|
mm_patch_merge_type = model_args.mm_patch_merge_type |
|
image_grid_pinpoints = model_args.image_grid_pinpoints |
|
self.config.mm_vision_tower = vision_tower |
|
self.config.img_size = model_args.img_size |
|
self.config.drop_path_rate = model_args.drop_path_rate |
|
self.config.vit_precision = model_args.vit_precision |
|
self.config.vit_model_path = model_args.vit_model_path |
|
self.config.num_query_token = model_args.num_query_token |
|
self.config.qformer_model_path = model_args.qformer_model_path |
|
self.config.adapter_module_name = model_args.adapter_module_name |
|
self.config.adapter_module_path = model_args.adapter_module_path |
|
self.config.max_num_segments = model_args.max_num_segments |
|
self.config.pretrain_mm_mlp_adapter = pretrain_mm_mlp_adapter |
|
|
|
if self.get_vision_tower() is None: |
|
vision_tower = build_vision_tower(model_args) |
|
|
|
if fsdp is not None and len(fsdp) > 0: |
|
self.vision_tower = [vision_tower] |
|
else: |
|
self.vision_tower = vision_tower |
|
else: |
|
if fsdp is not None and len(fsdp) > 0: |
|
vision_tower = self.vision_tower[0] |
|
else: |
|
vision_tower = self.vision_tower |
|
vision_tower.load_model() |
|
|
|
self.config.use_mm_proj = True |
|
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') |
|
self.config.mm_hidden_size = vision_tower.hidden_size |
|
self.config.mm_vision_hidden_size = vision_tower.hidden_size |
|
self.config.mm_vision_select_layer = mm_vision_select_layer |
|
self.config.mm_vision_select_feature = mm_vision_select_feature |
|
self.config.mm_patch_merge_type = mm_patch_merge_type |
|
self.config.image_grid_pinpoints = image_grid_pinpoints |
|
|
|
if getattr(model_args, "qformer_model_path", None): |
|
if self.get_qformer() is None: |
|
self.Qformer, self.ln_vision, self.query_tokens = build_Qformer( |
|
model_args.num_query_token, self.vision_tower.hidden_size) |
|
self.frame_position_encoding = nn.Embedding( |
|
model_args.max_num_segments, |
|
self.Qformer.config.hidden_size |
|
) |
|
self.config.mm_hidden_size = self.Qformer.config.hidden_size |
|
|
|
if model_args.qformer_model_path != 'from_scratch': |
|
self.load_pretrained_qformer(model_args.qformer_model_path) |
|
|
|
if getattr(model_args, 'adapter_module_name', None): |
|
if self.get_adapter_module() is None: |
|
self.adapter_module = build_adapter_module(self.config, self.vision_tower.hidden_size) |
|
self.adapter_module.load_model() |
|
self.config.mm_hidden_size = self.adapter_module.output_dim |
|
|
|
if getattr(self, 'mm_projector', None) is None: |
|
|
|
self.mm_projector = build_vision_projector(self.config) |
|
|
|
if 'unpad' in mm_patch_merge_type: |
|
embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype)) |
|
self.image_newline = nn.Parameter( |
|
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std |
|
) |
|
else: |
|
|
|
for p in self.mm_projector.parameters(): |
|
p.requires_grad = True |
|
|
|
if pretrain_mm_mlp_adapter is not None: |
|
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') |
|
def get_w(weights, keyword): |
|
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} |
|
|
|
def get_variable_frame_encoding_w(model_weights, load_weights): |
|
model_len = model_weights.shape[0] |
|
load_weights = {'.'.join(k.split('.')[1:]): v for k, v in load_weights.items()} |
|
|
|
load_len = load_weights['frame_position_encoding.weight'].shape[0] |
|
if model_len == load_len: |
|
return get_w(load_weights, 'frame_position_encoding') |
|
elif model_len < load_len: |
|
value = load_weights['frame_position_encoding.weight'][:model_len] |
|
return {'weight': value} |
|
else: |
|
value = model_weights.clone().cpu() |
|
value[:load_len] = load_weights['frame_position_encoding.weight'] |
|
return {'weight': value} |
|
|
|
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) |
|
if self.get_frame_position_encoding(): |
|
self.frame_position_encoding.load_state_dict(get_variable_frame_encoding_w(self.frame_position_encoding.weight, mm_projector_weights)) |
|
|
|
master_print(f"Loaded pretrained parameters from {pretrain_mm_mlp_adapter}") |
|
|
|
|
|
def load_pretrained_qformer(self, model_path): |
|
if os.path.isfile(model_path): |
|
checkpoint = torch.load(model_path, map_location="cpu") |
|
else: |
|
raise RuntimeError("checkpoint path is invalid") |
|
if 'projector.bin' in model_path: |
|
state_dict = {} |
|
match_keys = ['Qformer', 'query_tokens'] |
|
for k, v in checkpoint.items(): |
|
flag = False |
|
for match_key in match_keys: |
|
if match_key in k: |
|
flag = True |
|
break |
|
if flag: |
|
state_dict[k.replace('model.', '')] = v |
|
|
|
else: |
|
state_dict = checkpoint["model"] |
|
msg = self.load_state_dict(state_dict, strict=False) |
|
|
|
master_print(f"Loaded Qformer from {model_path}") |
|
|
|
|
|
|
|
|
|
|
|
def unpad_image(tensor, original_size): |
|
""" |
|
Unpads a PyTorch tensor of a padded and resized image. |
|
|
|
Args: |
|
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format. |
|
original_size (tuple): The original size of the image (height, width). |
|
|
|
Returns: |
|
torch.Tensor: The unpadded image tensor. |
|
""" |
|
original_width, original_height = original_size |
|
current_height, current_width = tensor.shape[1:] |
|
|
|
original_aspect_ratio = original_width / original_height |
|
current_aspect_ratio = current_width / current_height |
|
|
|
if original_aspect_ratio > current_aspect_ratio: |
|
scale_factor = current_width / original_width |
|
new_height = int(original_height * scale_factor) |
|
padding = (current_height - new_height) // 2 |
|
unpadded_tensor = tensor[:, padding:current_height - padding, :] |
|
else: |
|
scale_factor = current_height / original_height |
|
new_width = int(original_width * scale_factor) |
|
padding = (current_width - new_width) // 2 |
|
unpadded_tensor = tensor[:, :, padding:current_width - padding] |
|
|
|
return unpadded_tensor |
|
|
|
|
|
class LlavaMetaForCausalLM(ABC): |
|
|
|
@abstractmethod |
|
def get_model(self): |
|
pass |
|
|
|
def get_vision_tower(self): |
|
return self.get_model().get_vision_tower() |
|
|
|
def get_adapter_module(self): |
|
return self.get_model().get_adapter_module() |
|
|
|
def get_ln_vision(self): |
|
return self.get_model().get_ln_vision() |
|
|
|
def get_qformer(self): |
|
return self.get_model().get_qformer() |
|
|
|
def get_query_tokens(self): |
|
return self.get_model().get_query_tokens() |
|
|
|
def get_frame_position_encoding(self): |
|
return self.get_model().get_frame_position_encoding() |
|
|
|
def encode_images(self, images): |
|
|
|
image_features = self.get_vision_tower()(images) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.get_qformer(): |
|
image_features = self.get_ln_vision()(image_features) |
|
query_tokens = self.get_query_tokens() |
|
query_tokens = query_tokens.expand(image_features.shape[0], -1, -1) |
|
attn_mask = torch.ones(image_features.size()[:-1], dtype=torch.long).to(image_features.device) |
|
dtype_ = self.get_vision_tower().dtype |
|
|
|
image_features = self.qformer_fusion( |
|
query_tokens.to(dtype_), |
|
image_features.to(dtype_), |
|
attn_mask |
|
).to(images.dtype) |
|
|
|
|
|
return image_features |
|
|
|
def qformer_fusion(self, query_tokens, features, attn_mask=None): |
|
qformer = self.get_qformer() |
|
query_output = qformer.bert( |
|
query_embeds=query_tokens, |
|
encoder_hidden_states=features, |
|
encoder_attention_mask=attn_mask, |
|
return_dict=True |
|
) |
|
return query_output.last_hidden_state |
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
self, input_ids, position_ids, attention_mask, past_key_values, labels, |
|
images, image_sizes=None |
|
): |
|
|
|
vision_tower = self.get_vision_tower() |
|
if vision_tower is None or images is None or input_ids.shape[1] == 1: |
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels |
|
|
|
|
|
|
|
|
|
if type(images) is list or images.ndim == 5: |
|
if type(images) is list: |
|
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images] |
|
|
|
if images[0].ndim == 5: |
|
concat_images = torch.cat([image.flatten(0, 1) for image in images], dim=0) |
|
split_sizes = [image.shape[0:2] for image in images] |
|
else: |
|
concat_images = torch.cat([image for image in images], dim=0) |
|
split_sizes = [image.shape[0] for image in images] |
|
image_features = self.encode_images(concat_images) |
|
|
|
|
|
if images[0].ndim == 5: |
|
frame_ids = [] |
|
for split_size in split_sizes: |
|
frame_ids.append(torch.tensor([idx for idx in range(split_size[0]) for _ in range(split_size[1])], \ |
|
dtype=torch.long, device=image_features.device)) |
|
else: |
|
frame_ids = [torch.arange(split_size, dtype=torch.long, device=image_features.device) |
|
for split_size in split_sizes] |
|
frame_ids = torch.concat(frame_ids) |
|
frame_position_encoding = self.get_frame_position_encoding() |
|
if frame_position_encoding: |
|
|
|
frame_embeddings = frame_position_encoding(frame_ids).unsqueeze(-2) |
|
image_features += frame_embeddings |
|
|
|
|
|
adapter_module = self.get_adapter_module() |
|
if adapter_module: |
|
image_features = adapter_module(image_features, frame_ids) |
|
image_features = self.get_model().mm_projector(image_features) |
|
if images[0].ndim == 5: |
|
split_sizes = [split_size[0] * split_size[1] for split_size in split_sizes] |
|
image_features = torch.split(image_features, split_sizes, dim=0) |
|
if adapter_module: |
|
|
|
image_features = [x.view(im.shape[0], -1, x.shape[2]) for x, im in zip(image_features, images)] |
|
image_features = adapter_module.compress_token_per_img(image_features) |
|
|
|
mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat') |
|
image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square') |
|
if mm_patch_merge_type == 'flat': |
|
image_features = [x.flatten(0, 1) for x in image_features] |
|
elif mm_patch_merge_type.startswith('spatial'): |
|
new_image_features = [] |
|
for image_idx, image_feature in enumerate(image_features): |
|
if image_feature.shape[0] > 1: |
|
base_image_feature = image_feature[0] |
|
image_feature = image_feature[1:] |
|
height = width = self.get_vision_tower().num_patches_per_side |
|
assert height * width == base_image_feature.shape[0] |
|
if image_aspect_ratio == 'anyres': |
|
num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, self.get_vision_tower().config.image_size) |
|
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1) |
|
else: |
|
raise NotImplementedError |
|
if 'unpad' in mm_patch_merge_type: |
|
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() |
|
image_feature = image_feature.flatten(1, 2).flatten(2, 3) |
|
image_feature = unpad_image(image_feature, image_sizes[image_idx]) |
|
image_feature = torch.cat(( |
|
image_feature, |
|
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device) |
|
), dim=-1) |
|
image_feature = image_feature.flatten(1, 2).transpose(0, 1) |
|
else: |
|
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous() |
|
image_feature = image_feature.flatten(0, 3) |
|
image_feature = torch.cat((base_image_feature, image_feature), dim=0) |
|
else: |
|
image_feature = image_feature[0] |
|
if 'unpad' in mm_patch_merge_type: |
|
image_feature = torch.cat(( |
|
image_feature, |
|
self.model.image_newline[None].to(image_feature.device) |
|
), dim=0) |
|
new_image_features.append(image_feature) |
|
image_features = new_image_features |
|
else: |
|
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}") |
|
|
|
else: |
|
image_features = self.encode_images(images) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_labels = labels |
|
_position_ids = position_ids |
|
_attention_mask = attention_mask |
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
else: |
|
attention_mask = attention_mask.bool() |
|
if position_ids is None: |
|
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) |
|
if labels is None: |
|
labels = torch.full_like(input_ids, IGNORE_INDEX) |
|
|
|
|
|
_input_ids = input_ids |
|
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] |
|
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] |
|
|
|
new_input_embeds = [] |
|
new_labels = [] |
|
cur_image_idx = 0 |
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
num_images = (cur_input_ids == MM_TOKEN_INDEX).sum() |
|
if num_images == 0: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) |
|
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) |
|
new_input_embeds.append(cur_input_embeds) |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
|
|
image_token_indices = [-1] + torch.where(cur_input_ids == MM_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] |
|
cur_input_ids_noim = [] |
|
cur_labels = labels[batch_idx] |
|
cur_labels_noim = [] |
|
for i in range(len(image_token_indices) - 1): |
|
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
split_sizes = [x.shape[0] for x in cur_labels_noim] |
|
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) |
|
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) |
|
cur_new_input_embeds = [] |
|
cur_new_labels = [] |
|
|
|
for i in range(num_images + 1): |
|
cur_new_input_embeds.append(cur_input_embeds_no_im[i]) |
|
cur_new_labels.append(cur_labels_noim[i]) |
|
if i < num_images: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_image_idx += 1 |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) |
|
|
|
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds] |
|
|
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds) |
|
cur_new_labels = torch.cat(cur_new_labels) |
|
|
|
new_input_embeds.append(cur_new_input_embeds) |
|
new_labels.append(cur_new_labels) |
|
|
|
|
|
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) |
|
if tokenizer_model_max_length is not None: |
|
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] |
|
new_labels = [x[:tokenizer_model_max_length] for x in new_labels] |
|
|
|
|
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
batch_size = len(new_input_embeds) |
|
|
|
new_input_embeds_padded = [] |
|
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) |
|
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) |
|
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): |
|
cur_len = cur_new_embed.shape[0] |
|
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": |
|
new_input_embeds_padded.append(torch.cat(( |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), |
|
cur_new_embed |
|
), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, -cur_len:] = cur_new_labels |
|
attention_mask[i, -cur_len:] = True |
|
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
else: |
|
new_input_embeds_padded.append(torch.cat(( |
|
cur_new_embed, |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device) |
|
), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, :cur_len] = cur_new_labels |
|
attention_mask[i, :cur_len] = True |
|
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) |
|
|
|
if _labels is None: |
|
new_labels = None |
|
else: |
|
new_labels = new_labels_padded |
|
|
|
if _attention_mask is None: |
|
attention_mask = None |
|
else: |
|
attention_mask = attention_mask.to(dtype=_attention_mask.dtype) |
|
|
|
if _position_ids is None: |
|
position_ids = None |
|
|
|
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
def initialize_vision_tokenizer(self, model_args, tokenizer): |
|
if model_args.mm_use_patch_token: |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_VIDEO_PATCH_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if model_args.mm_use_start_end: |
|
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if num_new_tokens > 0: |
|
input_embeddings = self.get_input_embeddings().weight.data |
|
output_embeddings = self.get_output_embeddings().weight.data |
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg |
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg |
|
|
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = True |
|
if 'gemma' in model_args.model_name_or_path: |
|
|
|
pass |
|
else: |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|
|
if model_args.pretrain_mm_mlp_adapter: |
|
|
|
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') |
|
mm_projector_weights = {'.'.join(k.split('.')[1:]): v for k, v in mm_projector_weights.items()} |
|
|
|
|
|
|
|
|
|
assert num_new_tokens == 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
elif model_args.mm_use_patch_token: |
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = False |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|