|
import torch |
|
import torch.nn as nn |
|
|
|
from .processor import Blip2ImageTrainProcessor |
|
from .eva_vit import create_eva_vit_g |
|
|
|
|
|
class EvaClipVisionTower(nn.Module): |
|
|
|
def __init__(self, vision_tower, args, delay_load=False): |
|
super().__init__() |
|
self.is_loaded = False |
|
self.vision_tower_name = vision_tower |
|
|
|
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') |
|
self.args = args |
|
|
|
if not delay_load: |
|
self.load_model() |
|
|
|
|
|
|
|
|
|
def load_model(self, device_map=None): |
|
if self.is_loaded: |
|
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name)) |
|
return |
|
|
|
if not hasattr(self.args, 'dynamic_resolution'): |
|
dynamic_resolution = None |
|
else: |
|
dynamic_resolution = self.args.dynamic_resolution |
|
|
|
|
|
if (not hasattr(self.args, 'freeze_vision_encoder')) or self.args.freeze_vision_encoder: |
|
use_checkpoint = False |
|
else: |
|
use_checkpoint = True |
|
assert self.args.vit_precision == 'fp32', 'if the vision encoder is training, the type needs to be fp32' |
|
|
|
|
|
self.image_processor = Blip2ImageTrainProcessor( |
|
image_size=self.args.img_size, |
|
dynamic_resolution= dynamic_resolution |
|
) |
|
self.vision_tower = create_eva_vit_g( |
|
img_size=self.args.img_size, |
|
drop_path_rate=self.args.drop_path_rate, |
|
precision=self.args.vit_precision, |
|
vit_model_path=self.args.vit_model_path, |
|
use_checkpoint=use_checkpoint |
|
) |
|
|
|
|
|
|
|
self.is_loaded = True |
|
|
|
|
|
def feature_select(self, image_features): |
|
if self.select_feature == 'patch': |
|
image_features = image_features[:, 1:] |
|
elif self.select_feature == 'cls_patch': |
|
image_features = image_features |
|
else: |
|
raise ValueError(f'Unexpected select feature: {self.select_feature}') |
|
return image_features |
|
|
|
|
|
def forward(self, images): |
|
if type(images) is list: |
|
image_features = [] |
|
for image in images: |
|
image_forward_out = self.vision_tower(image.unsqueeze(0)) |
|
image_features.append(self.feature_select(image_forward_out).to(image.dtype)) |
|
|
|
else: |
|
image_features = self.vision_tower(images.to(dtype=self.dtype)) |
|
image_features = self.feature_select(image_features).to(images.dtype) |
|
|
|
return image_features |
|
|
|
@property |
|
def dummy_feature(self): |
|
return torch.zeros(1, self.hidden_size, dtype=torch.float) |
|
|
|
@property |
|
def hidden_size(self): |
|
return self.vision_tower.hidden_size |
|
|
|
@property |
|
def num_patches(self): |
|
return (self.vision_tower.image_size // self.vision_tower.patch_size) ** 2 |
|
|
|
@property |
|
def num_patches_per_side(self): |
|
return (self.vision_tower.image_size // self.vision_tower.patch_size) |
|
|
|
@property |
|
def dtype(self): |
|
return self.vision_tower.pos_embed.dtype |
|
|
|
|