muneebable
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -19,8 +19,73 @@ library_name: diffusers
|
|
19 |
|
20 |
## Usage
|
21 |
```python
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
```
|
|
|
19 |
|
20 |
## Usage
|
21 |
```python
|
22 |
+
|
23 |
+
# Load the model
|
24 |
+
def load_model(model_path, device):
|
25 |
+
# Initialize the same model architecture as during training
|
26 |
+
model = ClassConditionedUnet().to(device)
|
27 |
+
|
28 |
+
# Load the trained weights
|
29 |
+
model.load_state_dict(torch.load(model_path))
|
30 |
+
|
31 |
+
# Set model to evaluation mode
|
32 |
+
model.eval()
|
33 |
+
|
34 |
+
return model
|
35 |
+
|
36 |
+
# Predict function to generate images
|
37 |
+
def predict(model, class_label, noise_scheduler, num_samples=8, device='cuda'):
|
38 |
+
model.eval() # Ensure the model is in evaluation mode
|
39 |
+
|
40 |
+
# Prepare a batch of random noise as input
|
41 |
+
shape = (num_samples, 3, 256, 256) # Input shape: (batch_size, channels, height, width)
|
42 |
+
noisy_image = torch.randn(shape).to(device)
|
43 |
+
|
44 |
+
# Ensure class_label is a tensor and properly repeated for the batch
|
45 |
+
class_labels = torch.tensor([class_label] * num_samples, dtype=torch.long).to(device)
|
46 |
+
|
47 |
+
# Reverse the diffusion process step by step
|
48 |
+
for t in tqdm(range(49, -1, -1), desc="Reverse Diffusion Steps"): # Iterate backwards through timesteps
|
49 |
+
t_tensor = torch.tensor([t], dtype=torch.long).to(device) # Single time step for the batch
|
50 |
+
|
51 |
+
# Predict noise with the model and remove it from the image
|
52 |
+
with torch.no_grad():
|
53 |
+
noise_pred = model(noisy_image, t_tensor.expand(num_samples), class_labels) # Class conditioning here
|
54 |
+
|
55 |
+
# Step with the scheduler (model_output, timestep, sample)
|
56 |
+
noisy_image = noise_scheduler.step(noise_pred, t, noisy_image).prev_sample
|
57 |
+
|
58 |
+
# Post-process the output to get image values between [0, 1]
|
59 |
+
generated_images = (noisy_image + 1) / 2 # Rescale from [-1, 1] to [0, 1]
|
60 |
+
|
61 |
+
return generated_images
|
62 |
+
|
63 |
+
# Display predicted images
|
64 |
+
def display_images(images, num_rows=2):
|
65 |
+
# Create a grid of images
|
66 |
+
grid = torchvision.utils.make_grid(images, nrow=num_rows)
|
67 |
+
np_grid = grid.permute(1, 2, 0).cpu().numpy() # Convert to (H, W, C) format for visualization
|
68 |
+
|
69 |
+
# Plot the images
|
70 |
+
plt.figure(figsize=(12, 6))
|
71 |
+
plt.imshow(np.clip(np_grid, 0, 1)) # Clip values to ensure valid range
|
72 |
+
plt.axis('off')
|
73 |
+
plt.show()
|
74 |
+
|
75 |
+
# Example of loading a model and generating predictions
|
76 |
+
model_path = "model_epoch_0.pth" # Path to your saved model
|
77 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
78 |
+
|
79 |
+
# Load the model
|
80 |
+
model = load_model(model_path, device)
|
81 |
+
|
82 |
+
# Create a noise scheduler
|
83 |
+
noise_scheduler = DDPMScheduler(num_train_timesteps=1000, beta_schedule='squaredcos_cap_v2')
|
84 |
+
|
85 |
+
# Predict and generate samples for a specific class label
|
86 |
+
class_label = 1 # Example class label, change to your desired class
|
87 |
+
generated_images = predict(model, class_label, noise_scheduler, num_samples=2, device=device)
|
88 |
+
|
89 |
+
# Display the generated images
|
90 |
+
display_images(generated_images)
|
91 |
```
|