--- license: apache-2.0 language: - en pipeline_tag: text-to-image tags: - pytorch - diffusers - conditional-image-generation - diffusion-models-class datasets: - dpdl-benchmark/caltech_birds2011 library_name: diffusers --- # class-conditional-diffusion-cub-200 A Diffusion model on Cub 200 dataset for generating bird images. ## Usage Predict function to generate images ```python def load_model(model_path, device): # Initialize the same model architecture as during training model = ClassConditionedUnet().to(device) # Load the trained weights model.load_state_dict(torch.load(model_path)) # Set model to evaluation mode model.eval() return model def predict(model, class_label, noise_scheduler, num_samples=8, device='cuda'): model.eval() # Ensure the model is in evaluation mode # Prepare a batch of random noise as input shape = (num_samples, 3, 256, 256) # Input shape: (batch_size, channels, height, width) noisy_image = torch.randn(shape).to(device) # Ensure class_label is a tensor and properly repeated for the batch class_labels = torch.tensor([class_label] * num_samples, dtype=torch.long).to(device) # Reverse the diffusion process step by step for t in tqdm(range(49, -1, -1), desc="Reverse Diffusion Steps"): # Iterate backwards through timesteps t_tensor = torch.tensor([t], dtype=torch.long).to(device) # Single time step for the batch # Predict noise with the model and remove it from the image with torch.no_grad(): noise_pred = model(noisy_image, t_tensor.expand(num_samples), class_labels) # Class conditioning here # Step with the scheduler (model_output, timestep, sample) noisy_image = noise_scheduler.step(noise_pred, t, noisy_image).prev_sample # Post-process the output to get image values between [0, 1] generated_images = (noisy_image + 1) / 2 # Rescale from [-1, 1] to [0, 1] return generated_images def display_images(images, num_rows=2): # Create a grid of images grid = torchvision.utils.make_grid(images, nrow=num_rows) np_grid = grid.permute(1, 2, 0).cpu().numpy() # Convert to (H, W, C) format for visualization # Plot the images plt.figure(figsize=(12, 6)) plt.imshow(np.clip(np_grid, 0, 1)) # Clip values to ensure valid range plt.axis('off') plt.show() ``` # Example of loading a model and generating predictions ```python model_path = "model_epoch_0.pth" # Path to your saved model device = 'cuda' if torch.cuda.is_available() else 'cpu' model = load_model(model_path, device) noise_scheduler = DDPMScheduler(num_train_timesteps=1000, beta_schedule='squaredcos_cap_v2') class_label = 1 # Example class label, change to your desired class generated_images = predict(model, class_label, noise_scheduler, num_samples=2, device=device) display_images(generated_images) ```