Abror Shopulatov commited on
Commit
f412b6e
1 Parent(s): 151bb44

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: uzroberta-sentiment-analysis
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # uzroberta-sentiment-analysis
19
+
20
+ This model is a fine-tuned version of [rifkat/uztext-3Gb-BPE-Roberta](https://huggingface.co/rifkat/uztext-3Gb-BPE-Roberta) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.5718
23
+ - Precision: 0.9113
24
+ - Recall: 0.8869
25
+ - F1: 0.8989
26
+ - Accuracy: 0.896
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 32
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: cosine
51
+ - lr_scheduler_warmup_ratio: 0.1
52
+ - num_epochs: 4
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.1595 | 1.0 | 1125 | 0.4438 | 0.8971 | 0.8523 | 0.8741 | 0.872 |
60
+ | 0.1891 | 2.0 | 2250 | 0.4157 | 0.8961 | 0.9012 | 0.8987 | 0.894 |
61
+ | 0.1201 | 3.0 | 3375 | 0.5024 | 0.9074 | 0.8830 | 0.8950 | 0.892 |
62
+ | 0.0772 | 4.0 | 4500 | 0.5718 | 0.9113 | 0.8869 | 0.8989 | 0.896 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.20.1
68
+ - Pytorch 1.12.0+cu116
69
+ - Datasets 2.3.2
70
+ - Tokenizers 0.12.1