--- language: - uz tags: - transformers - robert - uzrobert - uzbek - latin license: apache-2.0 widget: - text: Menga yoqdi, juda yaxshi ekan. metrics: - precision - recall - f1 - accuracy model-index: - name: uzroberta-sentiment-analysis results: [] --- # uzroberta-sentiment-analysis This is a roBERTa-base model trained on ~23K reviews (more than 323K words) and finetuned for sentiment analysis of customer reviews. This model is built as part of author's project at the Uz-NLP 2022 Hackathon and it is suitable for Uzbek language. Labels: LABEL_0 -> Negative; LABEL_1 -> Positive ## Model description This model is a fine-tuned version of [rifkat/uztext-3Gb-BPE-Roberta](https://huggingface.co/rifkat/uztext-3Gb-BPE-Roberta) on the [Uzbek App reviews for Sentiment Classification](https://github.com/SanatbekMatlatipov/uzbek-sentiment-analysis) dataset. It achieves the following results on the evaluation set: - Loss: 0.5718 - Precision: 0.9113 - Recall: 0.8869 - F1 Score: 0.8989 - Accuracy: 0.896 ## Intended uses & limitations More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1595 | 1.0 | 1125 | 0.4438 | 0.8971 | 0.8523 | 0.8741 | 0.872 | | 0.1891 | 2.0 | 2250 | 0.4157 | 0.8961 | 0.9012 | 0.8987 | 0.894 | | 0.1201 | 3.0 | 3375 | 0.5024 | 0.9074 | 0.8830 | 0.8950 | 0.892 | | 0.0772 | 4.0 | 4500 | 0.5718 | 0.9113 | 0.8869 | 0.8989 | 0.896 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu116 - Datasets 2.3.2 - Tokenizers 0.12.1