murthy1998
commited on
Commit
•
e11d22c
1
Parent(s):
33d180c
Upload Web_application2.py
Browse files- Web_application2.py +161 -0
Web_application2.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import cv2
|
4 |
+
from PIL import Image
|
5 |
+
from ultralytics import YOLO
|
6 |
+
import base64
|
7 |
+
import fitz
|
8 |
+
os.chdir(r'D:\WebApplication_YOLO_AD_detectsystem\The Trail Image Folder')
|
9 |
+
# Define a function to apply custom CSS
|
10 |
+
pathimage = r"D:\WebApplication_YOLO_AD_detectsystem\BackgroundImage\rm314-adj-10.jpg"
|
11 |
+
|
12 |
+
def get_base64(bin_file):
|
13 |
+
with open(bin_file, 'rb') as f:
|
14 |
+
data = f.read()
|
15 |
+
return base64.b64encode(data).decode()
|
16 |
+
|
17 |
+
|
18 |
+
def set_background(png_file):
|
19 |
+
bin_str = get_base64(png_file)
|
20 |
+
page_bg_img = '''
|
21 |
+
<style>
|
22 |
+
.stApp {
|
23 |
+
background-image: url("data:image/png;base64,%s");
|
24 |
+
background-size: cover;
|
25 |
+
}
|
26 |
+
</style>
|
27 |
+
''' % bin_str
|
28 |
+
st.markdown(page_bg_img, unsafe_allow_html=True)
|
29 |
+
|
30 |
+
set_background(pathimage)
|
31 |
+
|
32 |
+
st.title(':orange[Advertisement Detection Web App]')
|
33 |
+
|
34 |
+
# Define custom CSS to style the text area and text color
|
35 |
+
# Define custom CSS to style the text area with a black background and white text color
|
36 |
+
custom_css = """
|
37 |
+
<style>
|
38 |
+
/* Add a border to the text area */
|
39 |
+
.custom-text-area {
|
40 |
+
border: 1px solid #000; /* You can adjust the border properties as needed */
|
41 |
+
border-radius: 5px;
|
42 |
+
padding: 10px;
|
43 |
+
background-color: black; /* Black background color */
|
44 |
+
color: white; /* White text color */
|
45 |
+
}
|
46 |
+
</style>
|
47 |
+
"""
|
48 |
+
|
49 |
+
# Apply the custom CSS
|
50 |
+
st.markdown(custom_css, unsafe_allow_html=True)
|
51 |
+
|
52 |
+
# Instructions:
|
53 |
+
multi = """ Instructions:--
|
54 |
+
|
55 |
+
1. The Model Trained with English & Tamil NewsPapers.
|
56 |
+
|
57 |
+
2. Use any type of News paper wether PDF or Image file, the Model will automaticall Detect adds.
|
58 |
+
|
59 |
+
3. The model will take at a time whole newspaper but it is recommended to upload single page or image. It is very useful for us to count and verify the published ads.
|
60 |
+
|
61 |
+
4. The Model accuracy is around 80%.
|
62 |
+
|
63 |
+
5. To convert PDF to images and to get single pages use the Below website upload the news paper and download the single pages.
|
64 |
+
|
65 |
+
'http://172.17.4.69:8501'
|
66 |
+
"""
|
67 |
+
st.markdown(multi)
|
68 |
+
|
69 |
+
# Function to convert PDF to images
|
70 |
+
def pdf_to_img(uploaded_file, img_path_prefix):
|
71 |
+
# Save the uploaded file
|
72 |
+
with open(uploaded_file.name, "wb") as f:
|
73 |
+
f.write(uploaded_file.getvalue())
|
74 |
+
|
75 |
+
file_extension = os.path.splitext(uploaded_file.name)[1].lower()
|
76 |
+
|
77 |
+
if file_extension == ".pdf":
|
78 |
+
pdf = fitz.open(uploaded_file.name)
|
79 |
+
image_paths = []
|
80 |
+
for page_number in range(pdf.page_count):
|
81 |
+
page = pdf[page_number]
|
82 |
+
# Convert the page to a pixmap
|
83 |
+
pixmap = page.get_pixmap()
|
84 |
+
|
85 |
+
# Convert the Pixmap to a Pillow Image
|
86 |
+
img = Image.frombytes("RGB", [pixmap.width, pixmap.height], pixmap.samples)
|
87 |
+
|
88 |
+
# Save the image as JPEG
|
89 |
+
image_path = f"{img_path_prefix}_page_{page_number + 1}.jpeg"
|
90 |
+
img.save(image_path)
|
91 |
+
image_paths.append(image_path)
|
92 |
+
|
93 |
+
pdf.close()
|
94 |
+
return image_paths
|
95 |
+
elif file_extension == ".jpeg" or file_extension == ".jpg":
|
96 |
+
# If the uploaded file is already an image, return its path
|
97 |
+
image_path = f"{img_path_prefix}_uploaded_image.jpeg"
|
98 |
+
with open(image_path, "wb") as f:
|
99 |
+
f.write(uploaded_file.getvalue())
|
100 |
+
return [image_path]
|
101 |
+
else:
|
102 |
+
st.error("Unsupported file format. Please upload a PDF or JPEG image.")
|
103 |
+
return []
|
104 |
+
|
105 |
+
# Function to perform object detection
|
106 |
+
def perform_object_detection(image_path):
|
107 |
+
# Load the YOLO model
|
108 |
+
model = YOLO(r"D:\ADS_Project_Deployment\Models\Detection Models\best31_1000_epochs.pt")
|
109 |
+
|
110 |
+
# Load and preprocess the image
|
111 |
+
img = cv2.imread(image_path)
|
112 |
+
|
113 |
+
results = model(img)
|
114 |
+
|
115 |
+
detections = [] # Store tuples of bounding box and confidence
|
116 |
+
# Access the detected objects and their properties
|
117 |
+
if isinstance(results, list):
|
118 |
+
for res in results:
|
119 |
+
if res.boxes is not None:
|
120 |
+
for det, confidence in zip(res.boxes.xyxy, res.boxes.conf):
|
121 |
+
x1, y1, x2, y2 = map(int, det[:4])
|
122 |
+
confidence_value = round(confidence.item(), 2)
|
123 |
+
detections.append(((x1, y1, x2, y2), confidence_value))
|
124 |
+
else:
|
125 |
+
print("No detections found in the current element.")
|
126 |
+
else:
|
127 |
+
print("No results found.")
|
128 |
+
|
129 |
+
return detections
|
130 |
+
|
131 |
+
|
132 |
+
# Main function
|
133 |
+
def main():
|
134 |
+
# st.title("Advertisement Detection Web App")
|
135 |
+
|
136 |
+
# File upload
|
137 |
+
uploaded_file = st.file_uploader("Choose a file", type=["pdf", "jpeg", "jpg"])
|
138 |
+
|
139 |
+
if uploaded_file is not None:
|
140 |
+
# Convert PDF to images or use the uploaded image directly
|
141 |
+
image_paths = pdf_to_img(uploaded_file, "uploaded_image")
|
142 |
+
|
143 |
+
if image_paths:
|
144 |
+
# Perform object detection for each image
|
145 |
+
for idx, image_path in enumerate(image_paths):
|
146 |
+
st.image(image_path, caption=f"Page {idx + 1}", use_column_width=True)
|
147 |
+
st.write(f"### Detected Advertisements - Page {idx + 1}")
|
148 |
+
detections = perform_object_detection(image_path)
|
149 |
+
|
150 |
+
# Iterate through the detections and extract the detected images
|
151 |
+
for i, (detection, confidence) in enumerate(detections):
|
152 |
+
x1, y1, x2, y2 = detection
|
153 |
+
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) # Convert the coordinates to integers
|
154 |
+
# Crop the image using the bounding box coordinates
|
155 |
+
detected_image = cv2.imread(image_path)[y1:y2, x1:x2]
|
156 |
+
# Display the detected image
|
157 |
+
st.image(detected_image, caption=f"Detected Image {i + 1}", use_column_width=True)
|
158 |
+
st.write(f"Confidence: {confidence}")
|
159 |
+
|
160 |
+
if __name__ == "__main__":
|
161 |
+
main()
|