Update README.md
Browse files
README.md
CHANGED
@@ -87,52 +87,52 @@ The following hyperparameters were used during training:
|
|
87 |
### Usage
|
88 |
|
89 |
|
90 |
-
-from transformers import AutoTokenizer, AutoModelForTokenClassification
|
91 |
-
-import torch
|
92 |
|
93 |
-
-custom_id2label = {
|
94 |
0: "O", 1: "B-CARDINAL", 2: "I-CARDINAL", 3: "B-DATE", 4: "I-DATE",
|
95 |
5: "B-EVENT", 6: "I-EVENT", 7: "B-GPE", 8: "I-GPE", 9: "B-LOC", 10: "I-LOC",
|
96 |
11: "B-MONEY", 12: "I-MONEY", 13: "B-ORDINAL", 14: "B-ORG", 15: "I-ORG",
|
97 |
16: "B-PERCENT", 17: "I-PERCENT", 18: "B-PERSON", 19: "I-PERSON",
|
98 |
20: "B-TIME", 21: "I-TIME"
|
99 |
}
|
100 |
-
-custom_label2id = {v: k for k, v in custom_id2label.items()}
|
101 |
|
102 |
-
-model_name = "mustafoyev202/roberta-uz"
|
103 |
-
-tokenizer = AutoTokenizer.from_pretrained(model_name)
|
104 |
-
-model = AutoModelForTokenClassification.from_pretrained(model_name, num_labels=23)
|
105 |
|
106 |
-
-model.config.id2label = custom_id2label
|
107 |
-
-model.config.label2id = custom_label2id
|
108 |
|
109 |
-
-text = "Tesla kompaniyasi AQSHda joylashgan."
|
110 |
|
111 |
-
-tokens = tokenizer(text.split(), return_tensors="pt", is_split_into_words=True)
|
112 |
|
113 |
-
-with torch.no_grad():
|
114 |
logits = model(**tokens).logits
|
115 |
|
116 |
-
-predicted_token_class_ids = logits.argmax(-1).squeeze().tolist()
|
117 |
|
118 |
-
-word_ids = tokens.word_ids()
|
119 |
-
-previous_word_id = None
|
120 |
-
-word_predictions = {}
|
121 |
|
122 |
-
-for i, word_id in enumerate(word_ids):
|
123 |
if word_id is not None:
|
124 |
label = custom_id2label[predicted_token_class_ids[i]]
|
125 |
if word_id != previous_word_id: # New word
|
126 |
word_predictions[word_id] = label
|
127 |
previous_word_id = word_id
|
128 |
|
129 |
-
-words = text.split() # Splitting for simplicity
|
130 |
-
-final_predictions = [(word, word_predictions.get(i, "O")) for i, word in enumerate(words)]
|
131 |
|
132 |
-
-print("Predictions:")
|
133 |
-
-for word, label in final_predictions:
|
134 |
print(f"{word}: {label}")
|
135 |
|
136 |
-
-labels = torch.tensor([predicted_token_class_ids]).unsqueeze(0) # Adjust dimensions
|
137 |
-
-loss = model(**tokens, labels=labels).loss
|
138 |
-
-print("\nLoss:", round(loss.item(), 2))
|
|
|
87 |
### Usage
|
88 |
|
89 |
|
90 |
+
- from transformers import AutoTokenizer, AutoModelForTokenClassification
|
91 |
+
- import torch
|
92 |
|
93 |
+
- custom_id2label = {
|
94 |
0: "O", 1: "B-CARDINAL", 2: "I-CARDINAL", 3: "B-DATE", 4: "I-DATE",
|
95 |
5: "B-EVENT", 6: "I-EVENT", 7: "B-GPE", 8: "I-GPE", 9: "B-LOC", 10: "I-LOC",
|
96 |
11: "B-MONEY", 12: "I-MONEY", 13: "B-ORDINAL", 14: "B-ORG", 15: "I-ORG",
|
97 |
16: "B-PERCENT", 17: "I-PERCENT", 18: "B-PERSON", 19: "I-PERSON",
|
98 |
20: "B-TIME", 21: "I-TIME"
|
99 |
}
|
100 |
+
- custom_label2id = {v: k for k, v in custom_id2label.items()}
|
101 |
|
102 |
+
- model_name = "mustafoyev202/roberta-uz"
|
103 |
+
- tokenizer = AutoTokenizer.from_pretrained(model_name)
|
104 |
+
- model = AutoModelForTokenClassification.from_pretrained(model_name, num_labels=23)
|
105 |
|
106 |
+
- model.config.id2label = custom_id2label
|
107 |
+
- model.config.label2id = custom_label2id
|
108 |
|
109 |
+
- text = "Tesla kompaniyasi AQSHda joylashgan."
|
110 |
|
111 |
+
- tokens = tokenizer(text.split(), return_tensors="pt", is_split_into_words=True)
|
112 |
|
113 |
+
- with torch.no_grad():
|
114 |
logits = model(**tokens).logits
|
115 |
|
116 |
+
- predicted_token_class_ids = logits.argmax(-1).squeeze().tolist()
|
117 |
|
118 |
+
- word_ids = tokens.word_ids()
|
119 |
+
- previous_word_id = None
|
120 |
+
- word_predictions = {}
|
121 |
|
122 |
+
- for i, word_id in enumerate(word_ids):
|
123 |
if word_id is not None:
|
124 |
label = custom_id2label[predicted_token_class_ids[i]]
|
125 |
if word_id != previous_word_id: # New word
|
126 |
word_predictions[word_id] = label
|
127 |
previous_word_id = word_id
|
128 |
|
129 |
+
- words = text.split() # Splitting for simplicity
|
130 |
+
- final_predictions = [(word, word_predictions.get(i, "O")) for i, word in enumerate(words)]
|
131 |
|
132 |
+
- print("Predictions:")
|
133 |
+
- for word, label in final_predictions:
|
134 |
print(f"{word}: {label}")
|
135 |
|
136 |
+
- labels = torch.tensor([predicted_token_class_ids]).unsqueeze(0) # Adjust dimensions
|
137 |
+
- loss = model(**tokens, labels=labels).loss
|
138 |
+
- print("\nLoss:", round(loss.item(), 2))
|