Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- M-AI-C/quran-en-tafssirs
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
---
|
8 |
+
```python
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from torch import Tensor
|
12 |
+
from transformers import AutoTokenizer, AutoModel
|
13 |
+
|
14 |
+
|
15 |
+
def average_pool(last_hidden_states: Tensor,
|
16 |
+
attention_mask: Tensor) -> Tensor:
|
17 |
+
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
18 |
+
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
19 |
+
|
20 |
+
|
21 |
+
# Each input text should start with "query: " or "passage: ".
|
22 |
+
# For tasks other than retrieval, you can simply use the "query: " prefix.
|
23 |
+
input_texts = ['query: Who is prophet known for patience',
|
24 |
+
'query: Who is moses',
|
25 |
+
"passage: passage 1",
|
26 |
+
"passage: passage 2"]
|
27 |
+
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-small')
|
29 |
+
model = AutoModel.from_pretrained('intfloat/e5-small')
|
30 |
+
|
31 |
+
# Tokenize the input texts
|
32 |
+
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
|
33 |
+
|
34 |
+
outputs = model(**batch_dict)
|
35 |
+
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
36 |
+
|
37 |
+
# (Optionally) normalize embeddings
|
38 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
39 |
+
scores = (embeddings[:2] @ embeddings[2:].T) * 100
|
40 |
+
print(scores.tolist())
|
41 |
+
```
|